PML Banner
 
 Data Analysis Sheet T.2

Data analysis sheet for thickness measurements in a commercial CMOS process.

Top view of a thickness test structure.Cross section of thickness test structure.
a)                                                                               b)
Figure T.2.1.  For thickness test structure #1: a) a design rendition and b) a cross-section.

To obtain the measurements in this data sheet, consult the following:
[1] J. C. Marshall and P. T. Vernier, "Electro-physical Technique for Post-fabrication
Measurements of CMOS Process Layer Thicknesses," NIST Journal of Research,
Vol. 112, No. 5, 2007, p. 223-256.
[2] SEMI MS2, "Test Method for Step Height  Measurements of Thin Films."


date data taken (optional) = / /


fabrication  
 
 



 
Preliminary INPUTS
Data Set Prelims Description
1 × magnification
2 orient =        
orientation of the test structure on the test chip
3 align =           alignment ensured ?
4 level =       
 
data leveled ?
5 cert = μm
6 σcert μm
7 zrepeat(shs) = μm at the same location on the physical step height (whichever is larger)
8 z6 = μm
9 zdrift = μm
10 calz = at the same location on the physical step height
11 zperc = % if applicable, over the instrument's total scan range, the maximum percent deviation from linearity, as quoted by the instrument manufacturer (typically less than 3%)
12 crystal = %
13 sigma =

                                      

                                    

 

TABLE 1a - Calibrated Step Height Measurements (in Micrometers)*,**

# Step Height uWstep ucert urepeat(shs) udrift ulinear ucW
1 step1AB
2 step1CD
3 step1EF
4 step1GH
5 step1rA
6 step1rD
7 step1rE
8 step2rA
9 step2AB
10 step2BC
11 step2CD
12 step2BD
13 step3AB(0)
14 step3AB(n)-
15 step3BC(0)
16 step3CD(0)

* Supply inputs to the columns labeled "Height" and "uWstep."
** Where ucert = |stepNXY| σcert / cert
and urepeat(shs) = |stepNXY| zrepeat(shs) / [2 (1.732) z6]
and udrift = |stepNXY| (zdrift calz) / [2 (1.732) cert]
and ulinear = |stepNXY| zperc / (1.732)
and ucW = (uWstep2 + ucert2 + urepeat(shs)2 + udrift2 + ulinear2)1/2
where each standard uncertainty component is obtained using a Type B analysis,
except for uWstep, which uses a Type A analysis.

TABLE 1b - Calibrated Step Height Measurements from Table 1a (in Micrometers) with Additional Uncertainty Components*,**,***
[where
σrough = μm****]

# Step Height σplatNX   σplatNY ubasic uWstep uLstep ures*****

uc

1 step1AB
2 step1CD
3 step1EF
4 step1GH
5 step1rA
6 step1rD
7 step1rE
8 step2rA
9 step2AB
10 step2BC
11 step2CD
12 step2BD
13 step3AB(0)
14 step3AB(n)-
15 step3BC(0)
16 step3CD(0)

* Supply inputs for "σplatNX," "σplatNY," "ures," and "σrough."
** The values for "Height" and "uWstep" are taken directly from Table 1a when the "Calculate and Verify" button is pushed.
*** Where ubasic = (ucert2 + urepeat(shs)2 + udrift2 + ulinear2)1/2
and uLstep = [(σplatNX - σrough)2 + (σplatNY - σrough)2]1/2
and uc = (ubasic2 + uWstep2 + uLstep2 + ures2)1/2
where each standard uncertainty component is obtained using a Type B analysis,
except for uWstep, which uses a Type A analysis.
****Where σrough is the smallest of all the values for σplatNX and σplatNY
***** Non-zero data can be added to the column labeled "ures" to obtain En values less than or equal to 1.0 in Tables 5 and 6.

TABLE 2 - Oxide Thickness Values From Capacitances*,**
[with σ
ε = (aF/μm)*** and σresCa = (aF/μm2)***]

# Thickness Designation Ca σCa*** ures t uc
(aF/μm2) (aF/μm2) (μm) (μm) (μm)
1 tfox(p1/sub)elec
2 tthin(p1/aan)elec
3 tfox(p2/sub)elec
4 tthin(p2/aan)elec
5 tthin(p2/p1)elec
6 [tfox,m1(pmd/sub)+tpmd(m1/fox)]elec
7 tpmd(m1/aan)elec
8 tpmd(m1/p1)elec
9 tpmd(m1/p2)elec
10 [tfox,m2(pmd/sub)+tpmd(imd/fox)
+timd(m2/pmd)]elec
11 [tpmd(imd/aan) +timd(m2/pmd)]elec
12 [tpmd(imd/p1) +timd(m2/pmd)]elec
13 [tpmd(imd/p2) +timd(m2/pmd)]elec
14 timd(m2/m1)elec
* Supply inputs for "Ca," "σCa," "σ
ε," and "σresCa."
** Where t = εSiO2 / Ca with εSiO2 = 34.5 aF/μm
and uc = (uCa2 + uε2 + ures2)1/2
with uCa = [εSiO2 / (Ca + σCa) - εSiO2 / (Ca - σCa)] / 2
and uε  = [(εSiO2 + 3σε) / Ca - (εSiO2 - 3σε) / Ca ] / [2 (1.732)] 
and ures = σresCa t / Ca
where each standard uncertainty component is obtained using a Type B analysis.
*** Non-zero data can be added to "σresCa" to obtain En values less than or equal to 1.0
in Tables 5 and 6.  Alternatively or in addition, the value(s) for σε and/or σCa can be modified. 

 

TABLE 3 - Thickness Values For The Interconnects*,**

# Symbol Rs σRs*** ρ σρ*** ures*** t uc
(Ω/□) (Ω/□) (Ω-μm) (Ω-μm) (μm) (μm) (μm)
1 t(p1)elec
2 t(p2)elec
3 t(m1)elec
4 t(m2)elec
* Supply inputs to the columns labeled "Rs," "σRs," "ρ," "σρ," and "ures."
** Where t = ρ / Rs
and uc = (uRs2 + uρ2 + ures2)1/2
with uRs = [ρ
 / (Rs + σRs) - ρ  / (Rs - σRs)] / 2
and uρ  = [(ρ + 3
σρ) / Rs - (ρ - 3σρ) / Rs ] / [2 (1.732)]
where each standard uncertainty component is obtained using a Type B analysis.

*** Non-zero data can be added to the column labeled "ures" to obtain En values less than or equal
to 1.0 in Tables 5 and 6.  Alternatively or in addition, the values for σRs and/or σρ can be modified.
 

 

TABLE 4 - Crystal Lattice Percentages

#

Approach

%tab (%)

%tbe (%)

1

Electrical*

2

Physical**

*  A prediction for the ideal case
**  As calculated from step1AB in Table 1a and tfox(p1/sub)elec and tthin(p1/aan)elec in Table 2


TABLE 5 - Calculated Thickness Values for the Given Thicknesses*,**

# Thickness
Designation
tphys
(
μm)
uc,phys
(
μm)
telec
(
μm)
uc,elec
(
μm)
En***
En < 1.0 ?

1

tfox(p1/sub)

2 tthin(p1/aan)

3

t(p1)

4

t(p1')

5

tfox(p2/sub)

6

tthin(p2/aan)

7 tthin(p2/p1)

8

t(p2)

9****

tfox,m1(pmd/sub)

10

tpmd(m1/fox)

11

tpmd(m1/aan)

12

tpmd(m1/p1)

13

tpmd(m1/p2)

14

tpmd(imd/fox)

15

tpmd(imd/aan)

16

tpmd(imd/p1)

17

tpmd(imd/p2)

18

tfox,m1(pmd/sub)+tpmd(m1/fox)

19

t(m1)

20****

tfox,m2(pmd/sub)

21

tpmd(imd/aan)+timd(m2/pmd)

22

tpmd(imd/p1)+timd(m2/pmd)

23

tpmd(imd/p2)+timd(m2/pmd)

24

timd(m2/pmd)

25

timd(m2/m1)

26

tfox,m2(pmd/sub)+tpmd(imd/fox)

+timd(m2/pmd)

27

t(m2)

28

timd(gl/pmd)

29

timd(gl/m1)

30

t(gl)

31

t(ni)

* For use in calculations, choose the thickness (either physical or electrical) with the lower value of uc.
** This analysis assumes that [tpmd(imd/aan)+timd(m2/pmd)]phys=[tpmd(imd/aan)+timd(m2/pmd)]elec
and tpmd(m1/p1)phys=tpmd(m1/p1)elec.
*** Where En = |tphys - telec| / [sigma (uc,phys2 + uc,elec2)1/2]    if sigma ¹ 10
and
En = |tphys - telec| / (3uc,phys+3uc,elec)    if sigma = 10.  For the above data, sigma =
.
If sigma = 2 (recommended), then 95 % of the data in Tables 5 and 6 should have
En values less than or equal to 1.0.
**** If tfox(pmd/sub) = tfox,m1(pmd/sub) = tfox,m2(pmd/sub), then for the sample data tphys for #9 is the
thickness to use in calculations due to it having the lower value of uc.

 

TABLE 6 - Calculated Thickness Values For The Virtual Oxides*

# Thickness
Designation
tphys
(
μm)
uc,phys
(
μm)
telec
(
μm)
uc,elec
(
μm)
En**
En < 1.0 ?
1 tthin,be(p1/aan)
2 tthin,ab(p1/aan)
3 tthin,be(p2/aan)
4 tthin,ab(p2/aan)
5 tthin,be(p2/p1)
6 tthin,ab(p2/p1)

7

tfox,be(p1/sub)

8

tfox,ab(p1/sub)

9

tfox,ab(p2/sub)

10

tfox,ab,m1(pmd/sub)

11

tfox,ab,m2(pmd/sub)

* For use in calculations, choose the thickness (either physical or electrical) with the lower value of uc.
** Where En = |tphys - telec| / [sigma (uc,phys2 + uc,elec2)1/2]   if sigma ¹ 10
and
En = |tphys - telec| / (3uc,phys+3uc,elec)   if sigma = 10.  For the above data, sigma =
.
If sigma = 2 (recommended), then 95 % of the data in Tables 5 and 6 should have En
values less than or equal to 1.0.


Results for number of En values less than or equal to 1.0 in Tables 5 and 6 with sigma = :

                            number of "yeses" =    percent "yeses"= %
                               number of "nos" =       percent "nos"= %
     total number of "yeses" and "nos" =                    total = %

Report the results as follows:  Since it can be assumed that the estimated values of the uncertainty
components are approximately uniformly or Gaussianly distributed with approximate combined standard
uncertainty uc, the thickness is believed to lie in the interval t ± uc (expansion factor k=1) representing a
level of confidence of approximately 68 %. 

Modify the input data, given the information supplied in any flagged statement below, if applicable, then recalculate:

1.
2.
3.
4.
5.  
6.  
7.  
8. calz and (cert + 0.100 μm)/calz.
9.
10.  
11.
12.
13.
14.
15.
16. σrough for Table 1b should be between 0.0000 μm and the smallest value for σplatNX and σplatNY, inclusive.
17.
18.
19. ε  for Table 2 should be between 0.0 aF/μm and 0.3 aF/μm, inclusive.
20. σresCa for Table 2 should be between 0 aF/μm2and 3.0 aF/μm2, inclusive.
21.   
22.
23. Ω/ and 35.0 Ω/ for t(p1)elec and t(p2)elec and between 0.0100 Ω/ and 0.0700 Ω/ for t(m1)elec and t(m2)elec.
24.  
25. ρ in Table 3 should be between 5.0 Ω-μm and 10.0 Ω-μm for t(p1)elec and t(p2)elec and between 0.020 Ω-μm and 0.040 Ω-μm for t(m1)elec and t(m2)elec.
26.
27.
28.  
29.
30.
31. There are thicknesses with En values greater than 1.0 in Tables 5 and/or 6 with sigma = .  Is this ok?

Return to Main MEMS Calculator Page.

Email questions or comments to mems-support@nist.gov.

NIST is an agency of the U.S. Commerce Department.
The Semiconductor and Dimensional Metrology Division is within the Physical Measurement Laboratory.
The MEMS Measurement Science and Standards Project is within the Nanoscale Metrology Group.

Date created: 3/4/2006
Last updated:
4/26/2013