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ABSTRACT 
 

This report provides the technical basis for two new measurement methods using optical 
interferometry.  The first proposed method is for in-plane length measurements of 
microelectromechanical systems (MEMS) devices and is called the Length Measurement Transitional 
Edge Method (or LMTEM).  This method provides smaller combined standard uncertainty values (e.g., 
2.0 µm for an approximate 1100 µm measurement) than were found in a comparison test with the 
traditional method using an optical microscope (4.0 µm for the same dimension).  The combined standard 
uncertainty is comparable to the estimated standard deviation of the result.  Therefore, the LMTEM is 
recommended for in-plane length measurements for more precise measurements in comparison to 
measurements taken with an optical microscope. 

The second proposed method is for out-of-plane measurements.  From these measurements, 
residual strain and strain gradient determinations are made.  This method is called the Three Point Method 
for Strain (or 3PMFS).  The use of three data points dramatically improves the calculated residual strain 
and strain gradient values when compared to the widely used 2-point methods.  Residual strains were 
calculated from a fixed-fixed beam using both the 3PMFS and a 2-point method.  The percent difference 
in the residual strain values between these two methods was 4.7 %.  The combined standard uncertainty, 
uc, for the 2-point method (i.e., uc=3.11e−6) is over two times larger than that for the 3PMFS (i.e., 
uc=1.28e−6) for this data set.  In addition, strain gradients were calculated from a cantilever using both the 
3PMFS and a 2-point method.  The percent difference in the strain gradient values between these two 
methods was 39 %.  The combined standard uncertainty for the 2-point method (i.e., uc=294.503 m−1) is 
over 490 times larger than that for the 3PMFS (i.e., uc=0.598 m−1) for this data set.  Therefore, the 3PMFS 
is recommended for residual strain and strain gradient calculations for more accurate and precise results 
as compared to a 2-point method. 
 
 
Key words:  ASTM, cantilevers, fixed-fixed beams, interferometry, length measurements, MEMS, 
residual strain, strain gradient, test structures 
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1.  INTRODUCTION 
 

The microelectronics industry needs improved measurements to produce more reliable products.  
This report develops two measurement methods for use in the design and fabrication of 
microelectromechanical systems (MEMS)1 devices.  The need for these two measurements is indicated by 
the results from the American Society for Testing and Materials (ASTM) First Residual Stress Round 
Robin Experiment.  Significant length and strain variations were found when independent laboratories 
measured the same devices.  The measurement methods developed in this report will be the technical 
basis for at least three ASTM standard test methods that will help the MEMS industry reduce these 
variations.  These methods also answer a challenge cited in the International Technology Roadmap for 
Semiconductors [1].  Specifically, the roadmap calls for the development of new MEMS test methods.2 
 
1.1  Background 
 
 The First Residual Stress Round Robin Experiment took place in the spring of 1999 under the 
guidance of ASTM Task Group E08.05.033 on Structural Films for MEMS4 and Electronic Applications.  
Both optical interferometers and optical microscopes were used to take these measurements.  Twelve 
laboratories participated in the round robin with the laboratories using their own measurement methods.  
As a result of this round robin, the ASTM task group is developing at least three standard test methods. 
 The need for the first proposed test method is exemplified in the wide variations in the in-plane 
length measurements of a designed 196 µm long fixed-fixed beam5 (such as shown in Fig. 1).  The 
measured in-plane lengths among the laboratories ranged from 190 µm to 224.6 µm [10].  These results 
are from the round robin.  This 34.6 µm range in the in-plane length of the fixed-fixed beam is not 
considered acceptable by the MEMS community.  It is at least an order of magnitude too large.  
Inaccurate and imprecise in-plane length measurements affect future designs, reliability, the number of 
design/fabrication iterations, and the time to market.  Therefore, the ASTM task group decided to develop 
a standard test method for measuring in-plane lengths.   
 

                                                           
1  MEMS are also referred to as microsystems technology (MST) and micromachines. 
2  This challenge is cited for beyond the year 2005 when the dynamic random access memory (DRAM) half pitch is expected to 
be less than 100 nm.  The proposed test methods in this report for length and strain measurements can also be applied to these 
more advanced fabrication processes. 
3  The main committee for this task group is E08 on Fatique and Fracture. 
4  To visualize a MEMS device, consider a platform (or substrate) on which mechanical layers are fabricated. Sacrificial layers 
are fabricated around portions of the mechanical layer.  At the end of the fabrication process, the sacrificial layers are removed 
to create mechanical layers suspended in air.  These newly created MEMS devices are free to perform the functions for which 
they were designed.  Two example MEMS devices are shown in Figures 1 and 2. 
5  For information on fixed-fixed beam test structures, consult the references [2-9]. 
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Figure 1.  Three-dimensional view of a fixed-fixed beam test structure  
depicting out-of-plane deflection in the z-direction. 

 
 
 

 Out-of-plane deflection measurements were also reported in the round robin.  These measurements 
indicate the magnitude and direction of the most deflected point along the fixed-fixed beam with respect 
to the end(s) of the beam.  The reported deflection values of one fixed-fixed beam test structure ranged 
from 0.24 µm deflected down to 0.8 µm deflected up.  Two laboratories considered this structure as being 
flat.6  Similar discrepancies also existed in the measurements done on cantilever test structures7 (such as 
shown in Fig. 2).  Given the wide discrepancy in these measurements, the ASTM task group decided to 
develop a standard test method for determining the residual strain (obtained from fixed-fixed beam test 
structures) and a standard test method for determining the strain gradient (obtained from cantilever test 
structures).   

This report is the culmination of thousands of experimental measurements taken on MEMS test 
structures at the National Institute of Standards and Technology (NIST).  During the taking of these 
measurements (some of which were taken for the round robin), the theories, equations, measurement 
techniques, and analyses were created or developed and optimized.  The measurements and analyses were 
also compared to those taken with other instruments and/or techniques. 
 
                                                           
6  It is recognized that the spread in the measured deflected values could be due in part to change in positioning during the 
weekly transport between laboratories. 
7  For information on cantilever test structures, consult the references [2-6]. 
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Figure 2.  Three-dimensional view of a cantilever test structure  
depicting out-of-plane deflection in the z-direction. 

 
 
 
 
1.2  Purpose 
 

This NIST Internal Report (NISTIR) provides the ASTM task group with the technical basis for at 
least three MEMS ASTM standard test methods using non-contact optical interferometry.  The first 
proposed test method is for in-plane length measurements, the second one is for residual strain 
measurements, and the third one is for strain gradient measurements.  ASTM standard test methods are 
presented in a cookbook style, the steps of which can be followed in the laboratory.  In order to evaluate 
and vote intelligently on a standard test method, however, the technical underpinnings behind the steps in 
the standard must be understood.  This document will be used in two ways.  First, it will be passed out to 
the subcommittee members (and others who might be interested) to inform them on the technical aspects 
of the test methods.  They will be able to follow the procedure in the laboratory and offer comments that 
would help describe the procedure better.  Second, the description in this report on how to make the 
measurements will be used as the basis for writing the ASTM standard test methods. 
 
1.3  Organization 
 

The two major sections that follow provide step-by-step guides and examples for the proposed test 
methods.  Section 2 is on in-plane length measurements, and Section 3 is on out-of-plane measurements 
and residual strain and strain gradient calculations.  The summary and conclusions follow in Section 4. 
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2.  IN-PLANE LENGTH MEASUREMENTS USING THE LMTEM 
 
 The first proposed test method is based on in-plane length measurements of MEMS devices using 
non-contact optical interferometry.8  It is called the Length Measurement Transitional Edge Method (or 
LMTEM).  Any in-plane length measurement (essentially parallel to the substrate) can be made if each 
end is defined by a distinctive out-of-plane vertical displacement (or transitional edge).  The 
discontinuities in the surface topography will define the endpoints for the measurement.  In-plane 
linelengths and in-plane deflection measurements are examples of measurements that are made with the 
LMTEM.9   
 For a better understanding of transitional edges, consider Figures 1, 3, and 4.  Figure 1 is a 3-D 
drawing of a surface micromachined fixed-fixed beam test structure.  (The anchor geometries of surface 
micromachined structures are based on conformal deposition technologies.)  Figure 3 is a top view of this 
test structure as would be seen in a computer-aided-design program.  Figure 4 depicts a 2-D data trace 
from an optical interferometer.  It can be seen that the transitional edges (such as Edges “1” and “2” in 
Fig. 4) exhibit an abrupt transition in the out-of-plane z-direction.  In this example, these abrupt 
transitions are from the top of the underlying layer to the top of the mechanical layer.10  Although other 
types of transitional edges exist, this is the type of transitional edge analyzed in this report for the 
measurements performed here. 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Top view of the fixed-fixed beam test structure shown in Figure 1.   
The 2-D data traces (“a” through “e”) are used in the LMTEM and/or the 3PMFS. 

 
 
                                                           
8 The non-contact optical interferometer must be capable of obtaining a three-dimensional (3-D) topographical data set.  
Although the interferometer can be used for many purposes, in this work, two-dimensional (2-D) data traces extracted from the 
3-D data set are examined.  These 2-D data traces are essentially perpendicular to the substrate.  Refer to Appendix A for  
interferometer specifications. 
9 Other types of in-plane length measurements are possible.  For those length measurements defined by transitional edges, the 
methods to be presented can be customized to perform those measurements accurately. 
10  Refer to Appendix A for the definition of terms used throughout this report and for a typical layer configuration. 
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Figure 4.  An example of a 2-D data trace taken between the anchors  
of a fixed-fixed beam test structure from which 

x1min, x1max, x2min, and x2max are found.  
 

 
2.1.  Step-By-Step Guide for the LMTEM 
 

To obtain an in-plane length measurement, four steps are taken:  (1) select four transitional 
edges,11 (2) obtain a 3-D data set, (3) ensure alignment, and (4) determine the in-plane length 
measurement.  These steps are discussed in the following four paragraphs followed by a listing of the 
substeps. 

Four transitional edges are chosen.  Two transitional edges are chosen that define the in-plane 
length measurement (such as Edges “1” and “2” in Figs. 1, 3, and 4).  Then, two transitional edges are 
chosen to ensure alignment.  These transitional edges should be parallel or perpendicular to the x- (or y-) 
axis of the interferometer.  Therefore, they can be the same as those that define the in-plane length 
measurement (such as Edges “1” and “2” in Fig. 3). 

To obtain the 3-D topographical data set, a non-contact optical interferometer is used.  In this data 
set, the height of the sample at each pixel location is available simultaneously in the x- and y-directions.  
(Refer to Fig. 1 for the orientation of the coordinate axes.)  2-D data traces extracted from the 3-D data set 
are examined in this work.  These 2-D data traces are in (or are parallel to) the xz-plane or in (or parallel 
to) the yz-plane. 

At least two, 2-D data traces are used to ensure alignment (e.g., Traces “a” and “e” in Fig. 3).  
Alignment is verified by ensuring that pertinent transitional edges (such as Edges “1” and “2” in this 
figure) are perpendicular to the alignment traces.  A minimum and maximum x- (or y-) data value defines 

                                                           
11  A transitional edge is an edge of a MEMS structure that is characterized by a distinctive out-of-plane vertical displacement. 
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each transitional edge.  If these minimum and maximum x- (or y-) data values are the same12 in the chosen 
alignment traces, alignment is verified.  If the data values are not the same, another 3-D data set is 
obtained after rotating the sample slightly.   
 When alignment is ensured, one or more 2-D data traces (e.g., Trace “a” or “e” in Fig. 3) 
determine the in-plane linelength or in-plane deflection measurement.  At each transitional edge defining 
the in-plane length measurement, data values defining a minimum and maximum length measurement are 
obtained.  The minimum and maximum lengths are calculated.  The in-plane length is the average of these 
two values.  The 99.7 % confidence limits assuming a Gaussian distribution are defined by the minimum 
and maximum length measurements.  [Alternatively, if the transitional edges that define the in-plane 
length measurement face the same way and have similar slopes and magnitudes (such as Edges “1” and 
“5” in Figs. 3 and 4), a different approach can be taken.  Here, an x- (or y-) data value (such as xlower in 
Fig. 4) is typically obtained at the lower portion of each transitional edge.  The smaller x (or y) value is 
subtracted from the larger x (or y) value to find the in-plane length.  The 99.7 % confidence limits 
assuming a Gaussian distribution are calculated based upon the separation between pixels.] 
 The four steps to obtain an in-plane length measurement were discussed in the above four 
paragraphs.  The substeps are listed below.  It is suggested that the reader refer to the examples given in 
sections 2.2 and 2.3 to illustrate the following substeps: 
 

1. Select four transitional edges 
a. Select the two transitional edges that define the in-plane length measurement  

(such as, Edges “1” and “2” in Fig. 3).  These are the first and second 
transitional edges.  The first transitional edge has x (or y) values that are less 
than the x (or y) values associated with the second transitional edge, and 

b. Select two transitional edges to ensure alignment (e.g., Edges “1” and “2” in 
Fig. 3).  These transitional edges should be parallel or perpendicular to the  
x- (or y-) axis of the interferometer.  They are typically edges that are the  
same, edges that are parallel, or edges that are perpendicular to those that  
define the in-plane length measurement. 

  2.  Obtain a 3-D data set 
a. Orient the sample in the x-direction, if possible, if the interferometer’s 

pixel-to-pixel spacing is smaller in the x-direction than in the y-direction.  
Otherwise, an orientation in the y-direction is acceptable, and 

b.  Obtain a 3-D data set that contains 2-D data traces perpendicular to the four 
transitional edges, if possible (guidelines on obtaining and preparing this 
data set for analysis are given in Appendix A). 

  3.  Ensure alignment13 
a.  Choose two, 2-D data traces within the 3-D data set for each selected transitional 

edge for ensuring alignment.  Each trace passes through and is  
perpendicular to at least one of the selected transitional edges for ensuring 
alignment.  If possible, choose traces that are sufficiently separated (such as 
Traces “a” and “e” on either side of the fixed-fixed beam in Fig. 3).  In this 

                                                           
12  The x- (or y-) data values correspond to discrete pixel locations.  Therefore, obtaining identical values in the alignment 
traces is not an insurmountable task. 
13  This alignment procedure assumes that the mechanical layer has relatively straight edges and is relatively uniform in 
thickness. 
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example, Traces “a” and “e” can be used for both Edge “1” and Edge “2,” 
   b.  Calibrate the 2-D data traces in the x- (or y-) and z-directions (refer to 

Appendix A), 
c.  Obtain the upper and lower x- (or y-) data values along the two transitional 

edges in the alignment traces as follows:14 
Given a transitional region (say, Edge “1” in Fig. 4, as shown 

between Points “g” and “h”), the lower transitional x-data value, xlower, is 
found as follows.  Going from Point “g” to Point “h,” the out-of-plane 
z-data values are examined one-by-one.  The data points are skipped over 
until a z value is obtained that is less than 75 nm.  (This assumes of course 
that the data was properly leveled with respect to the underlying layer15 as 
specified in Appendix A.)  The x value associated with the newly found z 
value is the lower transitional x-data value, xlower.16   
 The upper transitional x-data value, xupper, is found as follows.  The 
z-data values are examined one-by-one going from Point “h” to Point “g” in 
Figure 3 or 4.  Along the upper half of the transition, the x value associated 
with the first z value, which is less than 200 nm from the next z value, is 
called xupper.17 

d.  Ensure alignment by comparing the upper and lower x- (or y-) transitional data 
values in the alignment traces.  If the upper and lower values are not 
identical,18 obtain another 3-D data set after rotating the sample slightly. 

  4.  Determine the in-plane length measurement 
a. Choose the 2-D data trace(s) within the 3-D data set to determine the in-plane 

length measurement (such as Trace “a” or “e” in Fig. 3).  These traces 
pass through and are perpendicular to Edge “1,” Edge “2,” or both.  These 
are the transitional edges that define the in-plane length measurement. 

b. Calibrate the 2-D data trace(s) in the x- (or y-) and z-directions, if not already 
done (refer to Appendix A), 

   c.  Obtain the upper and lower x- (or y-) data values along the selected transitional 
edges in the trace(s) that define(s) the in-plane length measurement, and 

            d.  Calculate the minimum length, Lmin, the maximum length, Lmax, the average 
length, L, the 99.7 % confidence limits assuming a Gaussian distribution, 
and the combined standard uncertainty value [11], uc.  Lmin and Lmax are 
calculated as follows: 
 

Lmin = x2min – x1min  , and    (1) 

                                                           
14  Therefore, eight values are obtained. 
15  The underlying layer is directly beneath the sacrificial layer.  Therefore, when the sacrificial layer is removed, this layer is 
exposed to air directly beneath the suspended mechanical layer.  The underlying layer can be the substrate or a layer essentially 
parallel to the substrate. 
16  For the data sets in this report, the z values of the data points along the top of the underlying layer are between ±40 nm.  
Choosing the first z value that is less than 75 nm allows for poor leveling, rougher surfaces, and other phenomena.  
17  The difference in the z value of two neighboring points along the transitional edge is large (that is, typically greater than 
300 nm).  Along the anchor lip, this difference is a lot less (that is, typically less than 50 nm).  The 200 nm criteria allows for 
an anchor lip that is not flat, rougher surfaces than are used in this report, and other phenomena. 
18  The x- (or y-) data values correspond to discrete pixel locations.  Therefore, obtaining identical values in the two traces is 
not an insurmountable task. 
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Lmax = x2max – x1max   .     (2) 
 

The ‘min’ subscript refers to the transitional x value (xlower or xupper) that 
yields a minimum length.  The ‘max’ subscript refers to the transitional x 
value that yields a maximum length.  The ‘1’ refers to measurements taken 
at the first transitional edge (e.g., Edge “1” in Fig. 3) and the ‘2’ refers to 
measurements taken at the second transitional edge (e.g., Edge “2” in 
Fig. 3).   
 
With 99.7 % confidence assuming a Gaussian distribution, the value for L is 
between Lmin and Lmax.  In other words, 

 
L = (Lmin + Lmax) / 2  ±  (Lmax − Lmin) /2   .   (3) 

 
    The combined standard uncertainty value, uc, is uc = (Lmax − Lmin) /6.  This 

is discussed in more detail in section 2.5. 
 
If the two selected transitional edges that define the in-plane length measurement face the same way and 
have similar slopes and magnitudes (such as Edges “1” and “5” in Fig. 3), repeat step 4, as given below in 
step 4*. 
 
  4*.  Determine the in-plane length measurement (if the edges are oriented in the same 

       direction and have similar slopes and magnitudes) 
a. Choose the 2-D data trace(s) within the 3-D data set to determine the in-plane 

length measurement (if not already done), 
   b.  Calibrate the 2-D data trace(s) in the x- (or y-) and z-directions (if not already 

done), 
c. Obtain the lower19 x- (or y-) data values along the selected transitional edges in 

the trace(s) that define(s) the in-plane length measurement (if not already 
done), and 

             d.  Calculate L [by subtracting the smaller x (or y) value from the larger x (or y) 
value using, e.g., L = x2lower – x1lower].  Then, Lmin = L – 2*sep and  
Lmax = L + 2*sep where sep is the average calibrated separation between two 
interferometric pixels (in either the x- or y-direction) as applies to a given 
measurement [or sep = (sep1 + sep2)/2] where sep1 is the average calibrated 
separation between two pixels at one end of the in-plane length 
measurement and sep2 is the average calibrated separation between two 
pixels at the other end of the in-plane length measurement.  With typically 
99.7 % confidence assuming a Gaussian distribution, the value for L is 
between Lmin and Lmax.  In other words, equation (3) applies.  Therefore, 
L = (x2lower – x1lower) ± 2*sep.  The combined standard uncertainty value, uc, 
is uc = (Lmax − Lmin) /6 = 2*sep/3.  This is discussed in more detail in  
section 2.5. 

 
                                                           
19  The upper x- (or y-) data values are typically less definitive due to etching.  However, if this is not the case, consider the use 
of the upper x- (or y-) data values. 
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Choose the resulting value for L (from either step 4 or step 4*) that yields the smaller combined standard 
uncertainty value. 
 
2.2.  In-Plane Linelengths 

 
The steps and substeps for obtaining an in-plane length measurement were presented in 

section 2.1.  In this section, examples are given to illustrate the substeps associated with measuring an 
in-plane linelength, L. 

In ASTM’s First Residual Stress Round Robin Experiment, the in-plane linelengths of fixed-fixed 
beams [2-9], cantilevers [2-6], the crossbar of a ring [2-3,7], etc. were measured.  The ends of these 
structures are either anchored or free.  Therefore, the in-plane linelength measurements can fit into one of 
the following three classes of structures: 

1.  Two ends anchored (e.g., a fixed-fixed beam), 
2.  One end anchored (e.g., a cantilever), or 
3.  Two ends unanchored (e.g., the crossbar of a ring). 

The classes are defined by their end conditions.  In-plane linelengths of fixed-fixed beams, cantilevers, 
and the crossbar of a ring are found using the steps in section 2.1 and as described in sections 2.2.1, 2.2.2, 
and 2.2.3, respectively. 
 

2.2.1.  Two Ends Anchored 
 

For the class of structures with two ends anchored, the following example uses a fixed-fixed beam 
test structure, as shown in Figure 1.  Both ends of the central beam are anchored.  The in-plane linelength 
of the fixed-fixed beam, L, is the length between the edges of the anchor lips (Edges “1” and “2” in 
Fig. 3).20   The 3-D data set to be used for measurement is obtained with 2-D data traces perpendicular to 
these edges.  

Trace “a” or “e” (as shown in Fig. 3) is used to find the length.  Its end conditions are precisely 
defined by Edges “1” and “2” in Figure 4.  With a trace along the fixed-fixed beam (say, Trace “b,” “c,” 
or “d” in Fig. 5), Edges “1” and “2” are not present, making it difficult to determine accurately the ends of 
the beam.  Large error bars for the length measurement would result if this trace was used.  Therefore, 
Trace “a” or “e” is used to find the length of the fixed-fixed beam. 

To ensure alignment, x1min, x1max, x2min, and x2max are found in Traces “a” and “e.”  Note that these 
traces are on either side of the fixed-fixed beam.  In each trace, x1min and x2min are both values for xlower at 
Edges “1” and “2,” respectively.  Likewise, x1max and x2max are both values for xupper at Edges “1” and “2,” 
respectively.  If these four transitional x values (x1min, x1max, x2min, and x2max) in Trace “a” are not 
identical to those found in Trace “e,” another 3-D data set must be found after rotating the sample slightly. 
 The minimum length, Lmin, the maximum length, Lmax, the average length, L, and the 99.7 % 
confidence limits assuming a Gaussian distribution are found using equations (1) through (3).  Figure 6 
shows the data between and including x1min and x2min.  These two points are the endpoints of the Lmin 
measurement.  Figure 7 shows the data between and including x1max and x2max.  These two points are the 
endpoints of the Lmax measurement.  The scale of the z-axes in these figures is different. 

 

                                                           
20 This definition of length is design independent.  Structures can be analyzed independently of phenomena occurring at the 
beam supports.  The anchor lip is designed to be greater than or equal to the specified design length (i.e., the design rule).  For 
this analysis, it is recommended that the designed anchor lip be greater than or equal to 5.0 µm.  If the pixel-to-pixel spacing is 
1.56 µm, at least three data points will theoretically be associated with the top of the anchor lip. 
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Figure 5.  An example of a 2-D data trace taken along a fixed-fixed beam test structure.   
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Figure 6.  The fixed-fixed beam data from Figure 4 between and including x1min and x2min. 
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L max  = x2 max  − x1 max

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2

x  (mm)

z 
( µ

m
)

 
 

Figure 7.  The fixed-fixed beam data from Figure 4 between and including x1max and x2max. 
 
 

2.2.2.  One End Anchored 
 

 For the class of structures with one end anchored, the following example uses a cantilever test 
structure, as shown in Figure 2.  One end of the suspended beam is anchored.  The in-plane linelength of 
the cantilever, L, is the length from the edge of the anchor lip (Edge “1” in Fig. 8) to the free end of the 
cantilever (Edge “2”).  This does not include the region of the anchor lip. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Top view of the cantilever test structure shown in Figure 2. 
The 2-D data traces (“a” through “e”) are used in the LMTEM and/or the 3PMFS. 
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Two 2-D traces are used to determine the in-plane length measurement.  Trace “a” or “e” (as 
shown in Fig. 8) is used for the x1min and x1max measurements, as shown in Figure 9.  Trace “b,” “c,” or 
“d” is used for the x2min and x2max measurements, as shown in Figure 10.  Note that Trace “b,” “c,” or “d” 
would not provide definitive x1min and x1max measurements since Edge “1” is not present.  Therefore, two 
traces are used to determine the length of cantilevers (Trace “a” or “e” and Trace “b,” “c,” or “d”). 
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Figure 9.  An example of a 2-D data trace adjacent to a cantilever  

from which x1min and x1max are found.  
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Figure 10.  An example of a 2-D data trace along a cantilever  

from which x2min and x2max are found.   
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Traces “a” and “e” are used to ensure alignment.  These traces are on either side of the cantilever.  
The x1min, x1max, x4min, and x4max measurements are compared between the two traces.  If the compared x 
values are not identical, another 3-D data set must be found after rotating the sample slightly. 
  The two pertinent transitional edges that define the in-plane length measurement face the same 
direction.  If the slopes and magnitudes of the two edges are similar, step 4* in section 2.1 can be used.  
However, this is typically not the case for deflected cantilevers.  Therefore, step 4 is used and Lmin, Lmax, 
and L are calculated using equations (1) through (3).  For cantilever test structures oriented as shown in 
Figure 8, x1min and x2max are both values for xlower at Edges “1” and “2,” respectively.  Likewise, x1max and 
x2min are both values for xupper at Edges “1” and “2,” respectively. 
 

2.2.3.  Two Ends Unanchored 
 
 For the class of structures with two ends unanchored, the following example is of a ring test 
structure, as shown in Figure 11.  Both ends of the central crossbar are unanchored in the measurement of 
the in-plane linelength, L.  Therefore, both ends are treated like the unanchored end (Edge “2” in Fig. 8) 
of a cantilever.  One 2-D trace (say, Trace “a” in Fig. 11) is used to determine, L.  To ensure alignment, 
the upper and lower transitional x values at Edges “1” and “2” in Traces “a” and “b” are compared. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 11.  A ring test structure. 
 
 
 
 To determine L, the x transitional data values at each end of the crossbar are obtained.  Equations 
(1) through (3) are used to find Lmin, Lmax, and L.  In this case, x1max and x2max are both values for xlower at 
Edges “1” and “2,” respectively.  Likewise, x1min and x2min are both values for xupper at Edges “1” and “2,” 
respectively. 
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2.3.  In-Plane Static Deflection Measurements 
 

The steps and substeps for obtaining an in-plane length measurement were presented in 
section 2.1.  In this section, examples are given to illustrate the substeps associated with measuring an 
in-plane static deflection, D.  This is an in-plane length taken between two released parts21 or between a 
released part and a fixed location.22  Measurement strategies are presented below for two test structures. 
 

2.3.1.  Released Part to Released Part 
 
 To illustrate an in-plane static deflection measurement taken between two released parts, the 
following example is of a bow-tie test structure [12], as shown in Figure 12.  Here, D, as measured 
between Edges “1” and “2,” is required for a strain calculation.  The upper and lower transitional y-data 
values23 are obtained at Edges “1” and “2” in Trace “a.”  Equations (1) through (3) are used after 
replacing all occurrences of L with D and all occurrences of x with y.  To ensure alignment, the 
transitional y-data values in Trace “b” are compared with those in Trace “a.”  Trace “b” was chosen to 
ensure alignment given the geometry.  With the unevenly spaced teeth, this was the only location that 
provides an adequate lateral separation of the trace from the teeth so as to minimize any effects due to the 
presence of the teeth.   

 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 12.  A bow-tie test structure. 

                                                           
21  A released part is the portion of the structure suspended in air and free to move.  It was released from the sacrificial layer 
that surrounded it during most of the fabrication process.  
22  A fixed location includes an anchor to the underlying layer.  It was not completely surrounded by the sacrificial layer during 
the fabrication process.  Therefore, it is not suspended in air after the sacrificial layer is removed.  It is fixed to the underlying 
layer and is not free to move. 
23  This assumes that the interferometer’s pixel-to-pixel spacing in the y-direction is less than or equal to the pixel-to-pixel 
spacing in the x-direction. 
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  2.3.2.  Released Part to Fixed Location 
 
 To illustrate an in-plane static deflection measurement taken between a released part and a fixed 
location, the following example is of a pointer test structure [2-3,13], as shown in Figure 13.  The amount 
of deflection, D, of the pointer arm (as shown in Fig. 14) is required for a strain calculation.  As can be 
seen in this figure, D is the projected pointer deflection onto the vernier base. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 13.  A pointer test structure after the sacrificial layer has been removed. 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  A portion of the pointer test structure shown in Figure 13. 

x 

y 

D

D1

S1 S

pivot
point



 
 

 17

Proper alignment is necessary, and this is ensured via measurements taken on nearby fixed 
locations.24  The alignment traces are Traces “a” and “b” (as shown in Fig. 15).  The upper and lower 
transitional x values at both ends of the vernier base are compared in these two traces.  If they are not 
identical, another 3-D data set is required after rotating the sample slightly. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.  A portion of the pointer test structure shown in Figures 13 and 14. 
 
 
 
 Two 2-D traces are used (Traces “c” and “d” in Fig. 15) to find the deflection D1.  Then, D is 
calculated (refer to Fig. 14) using the following equation: 
 

D = S * D1 / S1   .     (4) 
 
For the purposes of this discussion, assume S and S1 in equation (4) are known.  To find D1, an x value in 
Trace “c” is compared to an x value in Trace “d.”  These x values correspond to the location of the central 
vernier finger, xfinger, in Trace “c” and the location of the pointer, xpointer, in Trace “d.”  D1 is then 
calculated using the following equation: 

 
          D1 = xpointer – xfinger   .     (5) 

 
In this equation, xpointer and xfinger must be further defined.  Examine the two edge transition regions 

in Trace “d” shown in Figure 16.  For the four x transitional values, the xlower value along the left hand 
edge is the most definitive.  This is the case for Trace “c” as well.25  Therefore, in this case, xpointer will be 
defined by xlower along the left hand edge in Trace “d.”  In Trace “c,” xfinger is xlower along the left hand 
edge of the central vernier finger. 

 
 

 

                                                           
24  The pointer is designed to deflect in-plane after the parts are released.  Therefore, measurements on fixed structures such as 
the vernier base are used to ensure alignment. 
25  The xupper values are typically less definitive due to etching.   
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Figure 16.  The 2-D data trace from which xpointer is found. 
 
 

Equation (5) is used to find D1.  In this case, with 99.7 % confidence assuming a Gaussian 
distribution, D1 is believed to lie in the interval D1 ± 2*sep.  This measurement is unique in that the 
measurement of D1 is taken from the same (left-hand) edge on two similar features.26   
 
2.4.  In-Plane Dynamic Deflection Measurements 

 
All resonating structures have peak deflections.  If a 3-D data set on a dynamically resonating 

structure can be obtained at the peak deflection, it can be analyzed using static deflection methods.  
Measurements on dynamically resonating structures can lead to Young’s modulus calculations [2].  This 
is a topic of further research. 
 
2.5.  Combined Standard Uncertainty Values for In-Plane Length Measurements  
 
 In the three sections that follow, combined standard uncertainty values for in-plane length 
measurements are compared using an optical interferometer and an optical microscope.  The combined 
standard uncertainty values are determined using the internationally-accepted technique given in the 
reference [11].  The in-plane length measurements were taken on various test structures during the first 
Residual Stress Round Robin Experiment.  Although many measurements were taken, only five 
measurements will be presented to represent lengths from approximately 1100 µm to less than 1 µm.  
Table 1 specifies the test structure, the measurement, and the approximate dimension measured.  The 
highest magnification possible for the given measurement is used for each instrument.  In the next two 
sections, results from the optical interferometer and the optical microscope are presented.  The third 
section compares the results from the two instruments. 
                                                           
26 This approach is not valid if data points from two edges facing different directions are compared (e.g., a data point from a 
right hand edge compared to a data point from a left hand edge) or when the two edges are dissimilar in nature (e.g., the slopes 
and magnitudes of the two edges are different). 
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Table 1 – The Test Structure, Measurement, and Approximate Dimension 
  Measured in the First Residual Stress Round Robin Experiment 

 
Test Structure 

 
Measurement 

 
Approximate 

Dimension 
 

Bow-Tie L measurement 
(see Fig. 12) 

1100 µm 

Bow-Tie* L measurement 
(see Fig. 12) 

700 µm 

Fixed-Fixed Beam L measurement 
(see Fig. 3) 

200 µm 

Bow-Tie D measurement 
(see Fig. 12) 

40 µm 

Pointer D1 measurement 
(see Figs. 14 and 15) 

< 1 µm 

* This bow-tie test structure is a smaller version of the one listed above. 
 
 

 The presented analysis is based on experience with hundreds of measurements.  From this 
experience, the predominant source of error is attributed to the edge transition region (or the pixel-to-pixel 
spacing if step 4* is used) with all other errors being insignificant in comparison.  In determining the 
combined standard uncertainty based on this sole source of error, a Type B evaluation [11] (i.e., one that 
uses means other than the statistical Type A analysis) is used.  From one data trace, predictions of the data 
distribution are possible based on an understanding of the fabrication process.  The data distribution is 
assumed to be Gaussian. 
 
 
 

Table 2 – Combined Standard Uncertainties for In-Plane Length Measurements 
for the Structures Specified in Table 1 as Obtained at NIST during the First ASTM  
MEMS Residual Stress Round Robin Using an Optical Interferometer 

 
Approximate 

Dimension 
Measured 

 
 
Magnification

 
Interval’s 

Half-Width 
(a)  

 

 
(Gaussian 

Distribution*) 
uc = a / 3 

1100 µm 5× 6.0 µm 2.0 µm 
700 µm 5× 5.0 µm 1.7 µm 
200 µm 20× 1.60 µm 0.53 µm 
40 µm 80× 0.46 µm 0.15 µm 

< 1 µm** 80× 0.20 µm 0.07 µm 
*  This assumes that the interval contains approximately 99.7 % of the measurements. 

**  Step 4* in section 2.1 was used for this measurement. 
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2.5.1.  Combined Standard Uncertainty Values for In-Plane Length Measurements Using an 
           Optical Interferometer 

 
 Interferometric data sets for five in-plane length measurements were taken.  Results from these 
data sets are recorded in Table 2 and presented in the following paragraphs. 
 The first measurement (as specified in Table 1) is approximately 1100 µm and measured on a 
bow-tie test structure.  It is the ‘L’ measurement shown in Figure 12.  The measurement procedure is 
similar to an in-plane linelength measurement with two ends anchored.  The magnification is given in 
column 2 of Table 2.  The interval’s half width [(i.e., (Lmax – Lmin)/2] is given in column 3.  The Lmin and 
Lmax measurements represent the 99.7 % confidence limits assuming a Gaussian distribution.  Therefore, 
the combined standard uncertainty (uc) [11] (i.e., estimated standard deviation) is calculated in the last 
column to be uc = (Lmax − Lmin)/6 = 2.0 µm.  Hence, the length is believed to lie in the interval L ± uc with 
a level of confidence of approximately 68 % where L = (Lmax + Lmin)/2. 
 The second and third measurements (specified in Table 1) are done in the same manner as the first 
measurement.  The results are given in Table 2. 
 The fourth measurement is an in-plane deflection measurement between two released parts on a 
bow-tie test structure.  The same general principles apply as for or in the previous measurements, 
however, the interval’s half width given in column 3 of Table 2 is (Dmax – Dmin)/2. 
 The fifth measurement is the measurement of a pointer’s deflection (D1), as shown in Figures 14 
and 15.  For this measurement, the edges face the same direction and have similar slopes and magnitudes.  
Therefore, step 4* in section 2.1 was used for this measurement.  D1 is the difference between two points 
(i.e., xpointer and xfinger).  Thus, D1min = D1 − 2*sep and D1max = D1 + 2*sep where sep is the average 
calibrated separation between two pixels and D1min and D1max represent the 99.7 % confidence limits 
assuming a Gaussian distribution.  The interval’s half width is (D1max – D1min)/2 = 2*sep.  The value for uc 
is calculated in the last column to be uc = (Lmax − Lmin)/6 = 2*sep/3  = 0.07 µm. 
 
 
 
 

Table 3 – Combined Standard Uncertainties for In-Plane Length Measurements 
for the Structures Specified in Table 1 as Obtained at NIST during the First ASTM  
MEMS Residual Stress Round Robin Using an Optical Microscope 

 
Approximate 

Dimension 
Measured 

 
 
Magnification 

 
Interval’s 

Half-Width 
(a) 

 
(Gaussian 

Distribution*) 
uc = a / 3 

1100 µm 5× 12.0 µm 4.0 µm 
700 µm 10× 6.0 µm 2.0 µm 
200 µm 50× 1.8 µm 0.6 µm 
40 µm 100× 0.60 µm 0.20 µm 
< 1 µm 100× 0.35 µm 0.12 µm 

*  This assumes that the interval contains approximately 99.7 % of the measurements. 
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2.5.2.  Combined Standard Uncertainty Values for In-Plane Length Measurements Using an 
           Optical Microscope 

 
 The same five measurements were taken with an optical microscope as were taken with the optical 
interferometer in the last section.  Results for the optical microscope are recorded in Table 3 and 
presented in the following paragraphs. 
 The first measurement (as specified in Table 1) is approximately 1100 µm.  An optical microscope 
photographed this dimension at a magnification of 5×.  A photograph was also taken of the 10 µm grid 
ruler used to calibrate the interferometer (see Appendix A).  Using a fine grid desk ruler and a tabletop 
magnifier, a calibrated bow-tie measurement was recorded to ±12.0 µm.  These limits correspond to 
99.7 % confidence limits assuming a Gaussian distribution.  The interval’s half width is 12.0 µm, as 
specified in Table 3.  Therefore, uc = 4.0 µm, as listed in the last column. 
 The second, third, and fourth measurements were taken in a similar manner, but at magnifications 
of 10×, 50×, and 100×, respectively. 
 The fifth measurement is of the pointer deflection (D1).  This pointer did not move much.  In fact, 
it was determined that it moved one-sixth of the pointer width plus or minus one-eighth of the pointer 
width.  The interval corresponds to 95 % confidence limits assuming a Gaussian distribution.  After 
recording a calibrated pointer width measurement, the interval’s half-width was calculated to be 0.35 µm 
for 99.7 % confidence limits.  Therefore, uc = 0.12 µm as calculated in the fourth column. 
 

2.5.3. Comparing Combined Standard Uncertainty Values for In-Plane Length Measurements 
between an Optical Interferometer and an Optical Microscope 

 
 The combined standard uncertainties for in-plane lengths from various test structures using an 
optical interferometer and an optical microscope were presented in the previous two sections.  For each 
in-plane length measurement, as specified in the first column of Tables 2 and 3, the values for uc 
presented in the fourth column of Table 2 are less than those presented in the fourth column of Table 3.  
Therefore, the optical interferometer is recommended for in-plane length measurements.  More precise 
in-plane length measurements result (i.e., smaller values for uc) in comparison to measurements taken 
with an optical microscope.  Measurements from the optical microscope can be used for verification 
purposes. 
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3.  OUT-OF-PLANE MEASUREMENTS AND STRAIN CALCULATIONS 
USING THE 3PMFS 

 
 The next two proposed test methods are based on out-of-plane measurements using non-contact 
optical interferometry.27  From these measurements, residual strain and strain gradient calculations are 
made.  This method is called the Three Point Method for Strain (or 3PMFS).  Three data points are 
obtained that define the functions that characterize the out-of-plane shape of the structures.  This makes it 
independent of boundary conditions.  The cosine function is typically used to model the out-of-plane 
shape of fixed-fixed beams (such as shown in Fig. 1) [2-9].28  The residual strain is calculated after the 
appropriate lengths are determined.  The circular function is typically used to model the out-of-plane 
shape of cantilevers (such as shown in Figs. 2 and 17) [2-6].  The strain gradient is calculated from the 
radius of this circle. 

Calculations for the 3PMFS using the method presented in this report can be performed on-line at 
a website at NIST [14]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.  Cross section of the cantilever test structure shown in Figure 8. 
 
 
 
3.1.  Step-By-Step Guide for the 3PMFS 
 

To obtain the out-of-plane measurements, five steps are taken:  (1) select four transitional edges, 
(2) obtain a 3-D data set, (3) ensure alignment, (4) determine the endpoints of the in-plane linelength 
measurement, and (5) obtain data points representative of the shape of the structure.  With a few 
variations, the details associated with the first four steps are similar to those found in section 2.1 for 
measuring in-plane lengths.  Three data points are obtained in the fifth step to define each function that 
models the out-of-plane shape of the structure. 

                                                           
27  The non-contact optical interferometer must be capable of obtaining a 3-D topographical data set.  Although the 
interferometer can be used for many purposes, in this work, 2-D data traces extracted from the 3-D data set are examined.  
These 2-D data traces are essentially perpendicular to the substrate. 
28  Actually, two cosine functions merged at the peak (or valley) measurement are used in the 3PMFS. 
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It is suggested that the reader refer to the examples given in section 3.2 to illustrate the following 
details associated with the five recommended steps:  
 
  1.  Select four transitional edges 

a.  Select the two transitional edges that define the in-plane length measurement  
(such as Edges “1” and “2” in Fig. 3).  These are the first and second 
transitional edges.  The first transitional edge has x (or y) values that are less 
than the x (or y) values associated with the second transitional edge, and 

b.  Select two transitional edges to ensure alignment (e.g., Edges “1” and “2” in 
Fig. 3).  These transitional edges should be parallel or perpendicular to the  
x- (or y-) axis of the interferometer.  They are typically edges that are the 
same, edges that are parallel, or edges that are perpendicular to those that  
define the in-plane length measurement. 

  2.  Obtain a 3-D data set 
a.  Orient the sample in the x-direction, if possible, if the interferometer’s 

pixel-to-pixel spacing is smaller in the x-direction than in the y-direction.  
Otherwise, an orientation in the y-direction is acceptable, and  

b.  Obtain a 3-D data set that contains 2-D data traces  
(i)  Parallel to the in-plane length of the curved structure and  
(ii)  Perpendicular to the four transitional edges, if possible (guidelines 

on obtaining and preparing this data set for analysis are given in 
Appendix A). 

  3.  Ensure alignment 
a.  Choose two, 2-D data traces within the 3-D data set for each selected transitional 

edge for ensuring alignment.  Each trace passes through and is  
perpendicular to at least one of the selected transitional edges for ensuring 
alignment.  If possible, choose traces that are sufficiently separated (such as 
Traces “a” and “e” on either side of the fixed-fixed beam in Fig. 3).  In this 
example, Traces “a” and “e” can be used for both Edge “1” and Edge “2,” 

   b.  Calibrate the 2-D data traces in the x- (or y-) and z-directions (refer to 
Appendix A), 

   c.  Obtain the upper and lower x- (or y-) data values along the two transitional  
edges in the alignment traces (see section 2.1), and 

d.  Ensure alignment by comparing the upper and lower x- (or y-) transitional data 
values in the alignment traces (refer to Section 2 on in-plane length 
measurements).  If the upper and lower values are not identical,29 obtain 
another 3-D data set after rotating the sample slightly. 

  4.  Determine the endpoints of the in-plane linelength measurement 
a.  Choose the 2-D data trace(s) within the 3-D data set to determine the in-plane 

linelength measurement (such as Trace “a” or “e” in Fig. 3).  These traces 
pass through and are perpendicular to Edge “1,” Edge “2,” or both.  These 
are the transitional edges that define the in-plane length measurement.  
(Refer to Section 2 on in-plane length measurements), 

b. Calibrate the 2-D data trace(s) in the x- (or y-) and z-directions, if not already 
                                                           
29  The x- (or y-) data values correspond to discrete pixel locations.  Therefore, obtaining identical values in the two traces is 
not an insurmountable task. 
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done (refer to Appendix A), 
   c.  Obtain the upper and lower x- (or y-) data values along the selected transitional 

edges in the trace(s) that define(s) the in-plane linelength measurement (see 
section 2.1), and 

d.  Average the upper and lower x- (or y-) data values to obtain the endpoints (e.g., 
x1ave and x2ave) of the in-plane linelength measurement using the following 
equations: 

 
       x1ave = (x1min + x1max) / 2   , and      (6) 
       x2ave = (x2min + x2max) / 2   .      (7) 

 
    (Refer to section 2.1 for the definitions of x1min, x1max, x2min, and x2max.) 
  5.  Obtain data points representative of the shape of the structure 

a.  Choose at least three30 2-D data traces (within the 3-D data set) along the curved 
    structure (such as Traces “b,” “c,” and “d” in Fig. 3 or Fig. 8).  Calibrate the 

2-D data traces in the x- (or y-) and z-directions, if not already done (refer to 
Appendix A), 

   b.  In each data trace, eliminate the data values at both ends of the trace that will not 
be included in the modeling (such as all data values outside and including 
Edges “3” and “4” in Fig. 5), 

   c.  Divide the remaining data into two data sets if there is a peak (or valley) within 
the length of the curved structure (as shown in Fig. 18).  [The division 
should occur at the x (or y) value corresponding to the maximum (or 
minimum) z value.  Include this data point in both data sets.] 

d.  Determine the function to be used to model each data set along the curved 
structure (e.g., in the analysis that follows, a cosine function is used to 
model each data set from fixed-fixed beams and a circular function is used 
to model the data set from cantilevers), and 

   e.  Choose 3 representative data points (sufficiently separated) within each data set. 
  
 Given the out-of-plane measurements obtained above, the following five steps are used to 
calculate the length of the curved structure and the strain: 
 
  1.  Obtain the inputs, 
  2.  Solve three equations for three unknowns for each data set, 
  3.  Plot the function with the data, 
  4.  Calculate the length of the curved structure,31 and 
  5.  Calculate the residual strain or the strain gradient. 
 
By inserting the inputs (from step 1) into the correct locations on the appropriate NIST Web page [14], 
steps 2, 4, and 5 can be performed on-line in a matter of seconds.  The following section gives examples 
to illustrate the steps given in this section. 
 
 
                                                           
30  Three 2-D data traces are analyzed to obtain the variations across the width of the structure. 
31  Keep in mind, this is the length of the curved structure and not the in-plane linelength as found in Section 2. 



 
 

 25

3.2.  Out-of-Plane Static Measurements and Strain Calculations 
 

For out-of-plane measurements and strain calculations, the same classes of structures are 
examined as for the in-plane linelength measurement in section 2.2.  These classes are once again defined 
by their end conditions and are as follows: 
  1.  Two ends anchored (e.g., a fixed-fixed beam [2-9]), 
  2.  One end anchored (e.g., a cantilever [2-6]), and 
  3.  Two ends unanchored (e.g., the crossbar of a ring [2-3,7]). 
The fixed-fixed beams and cantilevers are characterized using the steps in section 3.1 and as described in 
sections 3.2.1 and 3.2.2.  The length of the curved crossbar of a ring can be found using similar strategies. 
 
 3.2.1.  Two Ends Anchored 
 
 For the class of structures with two ends anchored, consider the fixed-fixed beam test structure in 
Figure 3.32  Traces “a” and “e” are used to ensure alignment.  As specified in Section 2 on in-plane length 
measurements, the values for x1min, x1max, x2min, and x2max are compared in these two traces.  If they are 
not identical, another 3-D data set is found after rotating the sample slightly.  These same x-transitional 
data values are used to calculate the endpoints of the in-plane linelength of the fixed-fixed beam, as given 
in equations (6) and (7). 

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

Figure 18.  Data for the first and second curves are found from a trace similar to the  
trace shown in Figure 5.  The data in the figure above has been exaggerated to 

show the importance of the use of two curves.  Uneven beam support 
heights, varying boundary conditions, and non-central peak 
deflections make modeling with just one curve unrealistic. 

                                                           
32  Design recommendations for a fixed-fixed beam can be found in Appendix A. 
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Given the data in Trace “b,” “c,” or “d”33 along the fixed-fixed beam (as shown in Fig. 5), the 
extraneous data points (i.e., those points that are not representative of the shape of the structure) at both 
ends are eliminated.  Therefore, all data values outside and including Edges “3” and “4” are eliminated 
with the x values of all the remaining data points lying between x1ave and x2ave, inclusive.  The remaining 
data set is divided into two data sets with the division occurring at the x value corresponding to the 
maximum z-data value34 (see Fig. 18).  This data point is included in both data sets. 

The cosine function is chosen to model independently both data sets.  From each data set, three 
representative data points (sufficiently separated) are chosen. 
 
  3.2.1.1.  Obtain the Inputs 
 
 To calculate the length of the curved fixed-fixed beam and the residual strain, the inputs include 
the following: 
  1.  Three data points for the first data set (with the subscript ‘F’), that is: 

a.  An initial data point (x1F, z1F), such that x1ave < x1F, 
where x1ave is an endpoint of the in-plane linelength measurement, L, as 
calculated in equation (6), 

b.  The last data point (x3F, z3F), and  
c.  A centrally located data point (x2F, z2F) such that x1F < x2F < x3F and preferably 

located at or near the inflection point,35 
 2.  Three data points for the second data set (with the subscript ‘S’), namely: 

a.  The first data point (x1S, z1S),  
b.  A final data point (x3S, z3S), such that x3S < x2ave, 

where x2ave is an endpoint of the in-plane linelength measurement, L, as 
calculated in equation (7), and  

c.  A centrally located data point (x2S, z2S) such that x1S < x2S < x3S and preferably 
located at or near the inflection point, and 

 3.  The endpoints of the in-plane linelength measurement, L, (i.e., x1ave and x2ave) that are 
calculated using equations (6) and (7). 

 
By inserting the inputs above into the correct locations on the appropriate Web page [14], the remaining 
calculations are performed on-line in a matter of seconds.  However, the details of these calculations are 
given in the sections that follow. 
 

3.2.1.2.  Solve Three Equations for Three Unknowns for Each Data Set 
 
 For each data set, there are three equations to be solved numerically for three unknowns.  Three 
data points from each data set are given in the previous section.  Inserting two of the data points into the 
appropriate cosine function produces two equations.  The third equation is the x-to-w transformation 
equation. 
 The following two cosine36 functions are used to model the first and second data sets, respectively: 

                                                           
33  Actually, all three data traces (“b,” “c,” and “d”) are analyzed to obtain the variations across the width of the structure. 
34  For downward bending fixed-fixed beams, the division occurs at the x value corresponding to the minimum z-data value. 
35  Choosing (x2F, z2F) in this manner will provide a more accurate residual strain measurement assuming a non-zero, axial-
compressive, critical force.  
36  The sine function can be chosen for this as well. 
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z = s* AF*cos(w) + z3F + s*AF    , and    (8) 
z = s* AS*cos(w) + z1S + s*AS     (9) 

 
  where  
   AF = the amplitude of the cosine function used to model curve #1 in Figure 18, 

AS = the amplitude of the cosine function used to model curve #2 in Figure 18, 
s = 1 for downward bending fixed-fixed beams, and  
s = −1 for upward bending fixed-fixed beams. 

 
For the two curves in figure 18, s = −1.  These functions merge at w3F = π = w1S.  Converting the x values 
to w values makes the visualization process easier if the w values have π units.  Therefore, for the first 
curve, x1ave< x < x3F (or w1ave< w < π).  For the second curve, x1S < x < x2ave (or π < w < w2ave).37  To 
determine an x-to-w transformation equation, consider the following equation for a straight line: 
 

w = mx + d 
 
where m is the slope and d is the w-intercept.  Since two data points on this straight line are (x1, w1) and 
(x3, w3), the slope can be written as m = (w3 − w1)/(x3 − x1).  Solving the straight-line equation for d and 
inserting the slope results in the following equation: 
 

d = w – x (w3 − w1)/(x3 − x1)  . 
 
At x = x3, w = w3.  Therefore, the above equation can be written as: 
 

d = w3 – x3 (w3 − w1)/(x3 − x1)  . 
 
Inserting the slope and this equation for the w-intercept into the straight-line equation results in the 
following: 
 

           w = x(w3 − w1)/(x3 − x1) + w3 – x3(w3 − w1)/(x3 − x1)  , or 
w = w3 + (w3 – w1)(x – x3) / (x3 – x1) .   (10) 

 
Equation (10) is the x-to-w transformation equation.   

For the first curve38 in Figure 18, there are three equations to be numerically solved for three 
unknowns.  The unknowns are w1F, w2F, and AF.  The three equations are as follows: 
 

       w2F = π + (π – w1F)(x2F – x3F) / (x3F – x1F)   ,   (11) 
  z1F = s*AF*cos(w1F) + z3F + s*AF    ,  and   (12) 
  z2F = s*AF*cos(w2F) + z3F + s*AF   .    (13) 

 
Equation (11) was obtained by substituting x2F and w2F into equation (10).  For the second two equations, 
(w1F, z1F) and (w2F, z2F) are inserted into equation (8). 
                                                           
37  In Figure 18, which is not drawn to scale, a data point may not be associated with x1ave or x2ave since they are calculated 
using equations (6) and (7).  
38  The analysis for the second curve is given in Appendix B.   
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 From equations (12) and (13), the following two equations are derived: 
 
                  AF = s*(z1F – z3F) / (cos(w1F) + 1)   , and   (14) 

       z2F = [(z1F – z3F)cos(w2F) + z3Fcos(w1F) + z1F] / (cos(w1F) + 1)   . (15) 
 
The derivations of these equations can be found in Appendix C.  
 To find the three unknowns (w1F, w2F, and AF), the following iterative numerical approach is 
taken: 
  1.  Assume w1F = 0 and w1F∆ = π/2 where w1F∆ is an assigned increment which gets 

smaller with each iteration, as shown in step 6 below, 
2.  Solve equation (11) to find w2F,  
3.  Solve equation (15) to find z2F, 
4.  If the data value for z2F is greater than the calculated value for z2F,  

let w1F = w1F + w1F∆ for upward bending beams (i.e., when s = −1),39   
5.  If the data value for z2F is less than the calculated value for z2F,  

let w1F = w1F − w1F∆ for upward bending beams,40 
6.  Let w1F∆ = w1F∆ /2, 
7.  Repeat steps 2 through 6 until z2Fcalc =  z2Fdata to the preferred number of significant 

digits,41 and 
8.  Solve equation (14) for AF.  

 
In this way, the three unknowns (w1F, w2F, and AF) are calculated. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  Modeling the fixed-fixed beam data with cosine  
functions using the 3PMFS and a 2-point method. 

                                                           
39  For downward bending beams, let w1F = w1F − w1F∆. 
40  For downward bending beams, let w1F = w1F + w1F∆. 
41  Repeating these steps 1000 times in a computer program undoubtedly accomplishes this task. 
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  3.2.1.3.  Plot the Function with the Data 
 
 The first set of data (such as shown in Fig. 18) can now be plotted along with equation (8).  Notice 
the tight fit of the function to the data in Figure 19 using the 3PMFS.  If one of the three chosen data 
points is not representative of the data, alter its z value and repeat the analysis.42 
 
  3.2.1.4.  Calculate the Length of the Curved Structure 
 
 Residual strain calculations require the total length, Lc, of the curved structure.  Before the 
representative data points were obtained, the fixed-fixed beam data was divided into two data sets.  The 
length, LcF, of the first curve (between x1ave and x3F) represented by the first data set is found as follows: 
 
  1.  Obtain similar units (e.g., π units) on both axes 

Use v = Aπ-units*cos(w)   
where  Aπ-units = AF* (π – w1ave) / (x3F – x1ave), 
and w1ave is the value for w when x = x1ave in equation (10), 

  2.  Divide the curve along the w-axis into 1000 equal segments between w1ave
43 and π, 

  3.  Calculate the length of each segment using the Pythagorean theorem 
   Lseg = SQRT [(wnext – wlast)2 + (vnext – vlast)2] , 
  4.  Sum the lengths of the segments 
   Lπ-units = Σ Lseg , and 
  5.  Convert to the appropriate units 
   LcF =  Lπ-units * (x3F – x1ave) / (π – w1ave) . 
 

The length, LcS, of the second curve (between x1S and x2ave) represented by the second data set is 
found in a similar manner (refer to Appendix B).  The total length, Lc, of the fixed-fixed beam is the sum 
of the two lengths as given below: 

 
Lc = LcF + LcS .      (16) 

 
 
  3.2.1.5.  Calculate the Residual Strain Assuming a Zero, Axial-Compressive, Critical Force 
 

To calculate the residual strain (assuming a zero, axial-compressive, critical force)44 using a 
fixed-fixed beam, the following steps are taken: 

 
1.  Determine the total length, Lc, of the fixed-fixed beam (see section 3.2.1.4),  
2.  Determine the in-plane linelength, L, of the fixed-fixed beam using the method 

presented in Section 2 on in-plane length measurements (or using L = x2ave – x1ave 
which gives the same value for L), 

3.  Calculate ∆L using the equation ∆L = L − Lc, and 
                                                           
42  If the NIST Web pages are used to perform the analysis, this is simply done by changing one input value. 
43  The value for w1ave is chosen because this is the endpoint of the in-plane linelength (in terms of w) as found in equation (6).  
The length of the curved structure will ultimately be compared in the residual strain calculation with the in-plane linelength.  
Therefore, the endpoints of the in-plane linelength measurement are used to calculate the length of the curved structure. 
44  Consult Appendix D for more details. 
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4.  Calculate the residual strain, εr0, assuming a zero, axial-compressive, critical force  
using the equation εr0 = ∆L/Lc.45   

 
See Appendix D for the more complete calculation of residual strain, εr, assuming a non-zero, 
axial-compressive, critical force. 
 
 3.2.2.  One End Anchored 
 
 For the class of structures with one end anchored, consider the cantilever in Figure 8.46  Traces “a” 
and “e” are used to ensure alignment.  As specified in Section 2 on in-plane length measurements, the 
values for x1min, x1max, x4min and x4max are compared in these two traces.  If they are not identical, another 
3-D data set is found after rotating the sample slightly.  The x-transitional data values from Edges “1” and 
“2” are used to calculate the endpoints of the in-plane linelength of the cantilever, as given in equations 
(6) and (7). 
 Given the data in Trace “b,” “c,” or “d”47 along the cantilever (as shown in Fig. 10),48 the 
extraneous data points (i.e., those points that are not representative of the shape of the structure) at both 
ends are eliminated.  Therefore, all data values outside and including Edges “2” and “3” are eliminated 
with the x values of all the remaining data points being greater than or equal to x1ave.  The circular 
function49 is chosen to model the remaining data set.  From this data set, three representative data points 
[(x1, z1), (x2, z2), and (x3, z3)] are chosen.  These points should be significantly separated from each other. 
 
  3.2.2.1.  Obtain the Inputs 
 
 To calculate the length of the curved cantilever and the strain gradient, the inputs include the 
following: 
  1.  The three significantly separated data points: 

a.  (x1, z1) where x1 > x1ave, 
b.  (x2, z2) where x2 > x1ave, and  
c.  (x3, z3) where x3 > x1ave.  

   These data points can occur in any order. 
 2.  The endpoints (i.e., x1ave and x2ave) of the in-plane linelength measurement, L, that are 

calculated using equations (6) and (7).   
 
By inserting the inputs above into the correct locations on the appropriate Web page [14], the remaining 
calculations are performed on-line in a matter of seconds.  However, the details of these calculations are 
given in the sections that follow. 

                                                           
45  This equation assumes that the axial-compressive, critical force is zero.  Therefore, the calculated strain, εr0, is equal to the 
residual strain, εr.  With this assumption, note that the length value at zero strain, Lc, is used in the denominator of the strain 
equation.  Therefore, the calculated strain value is the residual strain in the fixed-fixed beam before the sacrificial layer is 
removed. 
46  Design recommendations for a cantilever can be found in Appendix A. 
47  Actually, all three data traces (“b,” “c,” and “d”) are analyzed to obtain the variations across the width of the structure. 
48  This data set is representative of a cantilever with its suspended end pointing to the right.  The analysis also applies to a 
cantilever with its suspended end pointing to the left.  By replacing the x values with y values, the cantilever can also be 
oriented in the + y-direction. 
49  A linear strain profile through the thickness of the cantilever before it is released from the surrounding sacrificial layer is 
assumed in the analysis. 
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 3.2.2.2.  Solve Three Equations for Three Unknowns 

 
 A circular function is chosen to model the shape of the cantilever.  The circular function is written 
as: 
 

                (x – a)2 + (z – b)2 = Rint
2            or 

z = b + s*SQRT [Rint
2 – (x – a)2]    (17) 

 
where Rint is the radius of the circle describing the shape of the topmost surface of the cantilever as 
measured with the interferometer, and (a, b) are the coordinates of the origin of that circle.  For downward 
bending cantilevers, s equals 1.  For upward bending cantilevers, s equals −1.   
 Given three data points, there are three equations and three unknowns.  The three equations are as 
follows: 
 

z1 = b + s*SQRT [Rint
2 – (x1 – a)2]   ,    (18) 

z2 = b + s*SQRT [Rint
2 – (x2 – a)2]   , and   (19) 

z3 = b + s*SQRT [Rint
2 – (x3 – a)2]   .    (20) 

 
The unknowns are a, b, and Rint.   
 Solving equations (18) through (20) results in the following equations for a, b, and Rint: 
 

   a = (anum1 + anum2) / aden   ,     (21) 
             b = z1 – Q′   , and     (22) 

     Rint = SQRT [(x1 – a)2 + Q2]     (23) 
 
  where 

anum1 = z2x1
2 − z2z3

2 + z2z1
2 − z2x3

2 + z1z3
2 + z1x3

2   , 
 anum2 = −z3x1

2 + z3x2
2 + z3z2

2 − z3z1
2 − z1x2

2 − z1z2
2   , 

   aden = 2*(x2z3 − x1z3 − x2z1 + x1z2 − x3z2 + x3z1)   , and 
Q = ± Q′  = ± [(x1 – a)2 – (x2 – a)2 – (z2 – z1)2] / [2*( z2 – z1)]   . 

 
The derivations of equations (21) through (23) can be found in Appendix E.  The unknowns (a, b, and 
Rint) are now known. 
 
  3.2.2.3.  Plot the Function with the Data 
 
 The data can now be plotted along with equation (17).  Notice the tight fit of the circular function 
to the data in Figure 20 using the 3PMFS.  If one of the three chosen data points is not representative of 
the data, choose another data point or alter its z value and repeat the analysis.50 
 
 
 
 

                                                           
50  If the NIST Web pages are used to perform the analysis, this is simply done by changing one input value. 
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Figure 20.  Modeling the cantilever data with circular functions 
using the 3PMFS and a 2-point method.  

 
 

3.2.2.4.  Calculate the Length of the Curved Structure 
 
 The length of the curved cantilever, Lc, is found as follows: 
 
  1.  Assume the shape of the cantilever is a circular arc 

such that z = b + s * SQRT [Rint
2 – (x – a)2] where  a, b, and Rint are obtained above, 

  2.  Divide the circular arc along the x-axis into 1000 equal segments between x1ave and 
x2ave,51 

  3.  Calculate the length of each segment using the Pythagorean theorem 
   Lseg = SQRT [(xnext – xlast)2 + (znext – zlast)2] , and 
  4.  Sum the lengths of the segments 
   Lc = Σ Lseg . 
 
 
  3.2.2.5.  Calculate the Strain Gradient 
 

The strain gradient [6], sg, is calculated using the following equation: 
 

    sg ≈ 1 / Rint .      (24) 
 

Note that sg is independent of the length of the curved cantilever.  See Appendix F for the derivation of 
this equation. 

                                                           
51  The values for x1ave and x2ave are chosen because they are the endpoints of the in-plane linelength as found in equations (6) 
and (7).  If a comparison is made between the length of the curved structure and the in-plane linelength, the endpoints of the 
in-plane linelength measurement should be used in the calculations of the length of the curved structure.  Therefore, the 
endpoints of the in-plane linelength measurement are used here. 
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3.3.  Out-of-Plane Dynamic Measurements 
 

All resonating structures have peak deflections.  If a 3-D data set on a dynamically resonating 
structure can be obtained at the peak deflection, it can be analyzed using static deflection methods.  
Measurements on dynamically resonating structures can lead to Young’s modulus calculations [2].  This 
is a topic of further research. 
 
3.4. Residual Strain and Strain Gradient Measurements and Their Uncertainties 

 
In the sections that follow, the residual strain and strain gradient measurements along with their 

uncertainties are compared using the 3PMFS and a 2-point method.  In determining the combined 
standard uncertainty, a Type B evaluation [11] (i.e., one that uses means other than the statistical Type A 
analysis) is used for each source of error.  Multiple traces (such as Traces “b,” “c,” and “d” in Fig. 3) are 
analyzed along the width of the mechanical layer.  This is due to the non-ideal nature of MEMS structures 
(e.g., the mechanical layer can be bowed or tilted).  In the sections that follow, results from a fixed-fixed 
beam test structure are presented first, followed by results from a cantilever test structure. 

 
3.4.1.  Residual Strain Measurements and Uncertainties for a Fixed-Fixed Beam 
 
A data set was obtained from a designed 596 µm long, 18 µm wide fixed-fixed beam.  The 

residual strain (assuming a zero, axial-compressive, critical force) was found using both the presented 
3PMFS and a 2-point method.  The assumptions for these two methods are given in Table 4.  The main 
sources of error for these two methods are given in the first column of Tables 5 and 6.  The combined 
standard uncertainty, uc, for the residual strain measurement is determined based on these errors as 
presented in the next two sections. 

 
 
 
 Table 4 – The Assumptions for the Presented 3PMFS and a 2-Point Method  
 Using a Fixed-Fixed Beam Test Structure to Find the Residual Strain 

 
Fixed-Fixed Beams 

 
Assumptions 

 
3PMFS 1.  Shape consists of two cosine functions 

     merged at the most deflected point 
     along the fixed-fixed beam 
2.  No deformities exist in the beam 

2-Point Method 1.  Shape is cosinusoidal 
2.  Beam supports are level with the 
     maximum (or minimum) deflection 
     at the center of the beam 
3.  No deformities exist in the beam 
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         Table 5 – Residual Strain Measurements and Combined Standard Uncertainty Calculations for a  
         596 µm Long, 18 µm Wide Fixed-Fixed Beam Test Structure Using the 3PMFS 

 
3PMFS 
Error 

Components 
 

 
Lower Limit 

(a−)  
for εr0 

 
Upper Limit 

(a+)  
for εr0 

 
Interval’s 

Half-Width
a=(a+−a−)/2 

 
(Gaussian 

Distribution) 
u3σ = a / 3 

 
(Rectangular 
Distribution) 
urect=a/sqrt(3) 

1.  width 
     variations 

−1.0237e−4 
(Trace “b”) 

−9.807e−5 
(Trace “d”) 

2.15e−6  1.24e−6 

2.  in-plane   
     linelength  
     variations 

−1.0029e−4 
(Lmin=591.215 µm) 

−9.878e−5 
(Lmax=600.724 µm) 

7.6e−7 2.5e−7  

3.  data point 
      variations 

−9.974e−5 
(z2F =6.013 µm) 

−9.933e−5 
(z2F =6.053 µm) 

2.1e−7  1.2e−7 

      
combined standard uncertainty = uc = SQRT[(uW)2 + (uL)2 + 6(u1pt)2/3] 

uc = SQRT[(1.24e−6)2 + (2.5e−7)2 + 6(1.2e−7)2/3] 
uc = 1.28e−6 

εr0 = −9.953e−5 ± 1.28e−6 
 
 
 
 

3.4.1.1.  Residual Strain Measurements and Uncertainties Using the 3PMFS 
 
 As listed in Table 5, the first source of error for the 596 µm long, 18 µm wide fixed-fixed beam 
using the 3PMFS is due to variations across the width of the fixed-fixed beam.  The fixed-fixed beam can 
be bowed or tilted.  Therefore, residual strain values were found from Traces “b,” “c,” and “d,” as shown 
in Figure 3.  The residual strain values from Traces “b” and “d” are used for the lower and upper limits as 
specified in columns 2 and 3 of Table 5.  The interval’s half-width (a) is calculated in the next column.  
The last two columns include calculations of standard uncertainties [11] (which are comparable to the 
estimated standard deviations).  The fifth column is the calculation of standard uncertainty assuming that 
the interval εr0 ± a contains approximately 99.7 % of the measurements assuming a Gaussian distribution.  
The sixth column is the calculation of standard uncertainty assuming that all the measurements lie in the 
interval εr0 ± a with equal probability.  For the width variations, the rectangular (or uniform) probability 
distribution function is assumed.  Therefore, the measurement uncertainty due to the width, uW, is 
uW = 1.24e−6.  

The second source of error is due to in-plane linelength variations.  The lower and upper limits 
(i.e., Lmin and Lmax) were found in Section 2 and are included in Table 5.  A Gaussian probability 
distribution function is assumed as it was in Section 2.  Therefore, the measurement uncertainty due to the 
in-plane linelength, uL, is uL = 2.5e−7. 

The third source of error is due to the six chosen data points.  Here, the z-data value for the 
centrally located data point in curve #1 (i.e., z2F) in Trace “c” was varied ±20 nm.52  The rectangular 
                                                           
52  Plus or minus 20 nm includes variations due to surface roughness and measurement uncertainties. 
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probability distribution function is assumed.  Therefore, the measurement uncertainty due to one data 
point, u1pt, is u1pt = 1.2e−7.  The measurement uncertainty for each of the six data points is assumed to be 
the same.  
 The combined standard uncertainty is calculated at the bottom of Table 5 using the following 
formula: 
 

uc = SQRT[(uW)2 + (uL)2 + 6(u1pt)2/3]  . 
 
This simplified formula assumes that the terms are uncorrelated.  Note that (u1pt)2 is multiplied by six to 
account for all six data points.  It is then divided by three to account for using an average of three 
measurements as specified in Appendix A. 

Therefore, for the 3PMFS, εr0 equals −9.953e−5 with a combined standard uncertainty (i.e., 
estimated standard deviation) of uc = 1.28e−6.  Since it can be assumed that the possible estimated values 
are either approximately uniformly distributed or Gaussian, as specified above, with approximate standard 
deviation uc, the residual strain is believed to lie in the interval εr0 ± uc with a level of confidence of 
approximately 68 % assuming a Gaussian distribution [15].  This value for residual strain (i.e., 
εr0 = −9.953e−5) was found using L = 595.970 µm and using data from Trace “c.” 
 
 
 
       Table 6 – Residual Strain Measurements and Combined Standard Uncertainty Calculations for a  
       596 µm Long, 18 µm Wide Fixed-Fixed Beam Test Structure Using a 2-Point Method 

 
2-POINT 

METHOD 
Error Components 

 
Lower Limit 

(a−)  
for εr0 

 
Upper Limit 

(a+)  
for εr0 

 
Interval’s 

Half-Width 
a = (a+ − a−) / 2 

 
(Rectangular 
Distribution) 

urect = a / sqrt(3) 
 

1. deflection   
    measurement 
    variations 

−9.865e−5 
(defl=3.861 µm) 

−9.115e−5 
(defl=3.709 µm) 

3.75e−6 2.17e−6 

2.  winit variations −1.0035e−4 
(winit=0) 

−9.352e−5 
(winit=π/5.8) 

3.42e−6 1.97e−6 

3.  in-plane       
     linelength  
     variations 

−9.638e−5 
(Lmin=591.215 µm)

−9.338e−5 
(Lmax=600.724  µm)

1.50e−6 8.7e−7 

4.  data point 
     variations 

−9.586e−5 
(defl = 3.805 µm) 

−9.387e−5 
(defl = 3.765 µm) 

9.9e−7 5.7e−7 

5.  width  
     variations 

−9.548e−5 
(Trace “b”) 

−9.427e−5 
(Trace “d”) 

6.1e−7 3.5e−7 

       
 uc = SQRT[(udefl)2 + (uwinit)2 + (uL)2 + 2(u1pt)2/3 + (uW)2]   

uc = SQRT[(2.17e−6)2 + (1.97e−6)2 + (8.7e−7)2 + 2(5.7e−7)2/3 + (3.5e−7)2]   
uc = 3.11e−6 

εr0 = −9.486e−5 ± 3.11e−6 
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3.4.1.2.  Residual Strain Measurements and Uncertainties Using a 2-Point Method 
 

As listed in Table 6, the first source of error for the fixed-fixed beam using a 2-point method is 
due to deflection, defl, measurement variations.  The deflection can be measured from the edge of either 
anchor lip to the peak (or valley) measurement along the length of the fixed-fixed beam.  The 
measurement uncertainty due to the deflection is determined in this table for the 596 µm long, 18 µm 
wide fixed-fixed beam.  The lower and upper limits for the deflection are given in the second and third 
columns along with the residual strain values associated with these limits.  These values were obtained 
from Trace “c” in Figure 3.  A rectangular (or uniform) probability distribution function is assumed.  The 
measurement uncertainty due to the deflection, udefl, is udefl = 2.17e−6. 

The second source of error is due to initial angle variations (or in terms of π, winit variations).  
Figure 21 includes a plot of εr0 versus winit.  Note that a minimum value of εr0occurs at winit = π/5.8 (or 
31.0°).  This figure also includes a plot of [−0.5−cos(winit)] versus winit, which simulates the shape of a 
fixed-fixed beam from winit = 0 to winit = π/2.  At π/5.8, look at the shape of the curve.  The initial angles 
can be expected to be less than π/5.8.  Therefore, the lower limit for the initial angle is assumed to be zero 
and the upper limit is assumed to be π/5.8.  These values are used in Table 6.  A rectangular probability 
distribution function is assumed.  Therefore, the measurement uncertainty due to the initial angle, uwinit, is 
uwinit = 1.97e−6. 

 

Residual Strain and [−0.5−cos(w init )]
versus Initial Angle
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Figure 21.  The plot of residual strain versus initial angle reveals a minimum value 
for εr0 at winit = π/5.8 (or 31.0°).  In the plot of [−0.5−cos(winit)] versus winit, π/5.8 

can be considered an upper limit for the initial angle. 
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The third source of error is due to in-plane linelength variations.  The lower and upper limits (i.e., 
Lmin and Lmax) were found in Section 2 and are included in Table 6.  The rectangular probability 
distribution function is assumed in the 2-point method.  Therefore, uL = 8.7e−7. 

The fourth source of error is due to the two data points used to calculate the deflection.  Here, the 
average value for the deflection (i.e., defl = 3.785 µm) is varied ±20 nm to simulate the variation due to 
one data point.  The rectangular probability distribution function is assumed.  Therefore, u1pt = 5.7e−7.  
The measurement uncertainty for the other data point is assumed to be the same. 

The fifth source of error is due to variations across the width of the fixed-fixed beam.  The 
fixed-fixed beam can be bowed or tilted.  Therefore, residual strain values were found from Traces “b,” 
“c,” and “d,” as shown in Figure 3.  The values from Traces “b” and “d” are used for the lower and upper 
limits in Table 6.  A rectangular probability distribution function is assumed.  Therefore, uW = 3.5e−7. 

The combined standard uncertainty, uc, is calculated at the bottom of Table 6 by taking the 
positive square root of the sum of the squares of the individual standard uncertainty components using the 
following formula: 
 

uc = SQRT[(udefl)2 + (uwinit)2 + (uL)2 + 2(u1pt)2/3 + (uW)2]  . 
 
This simplified formula assumes that the terms are uncorrelated.  Note that (u1pt)2 is multiplied by two to 
account for both data points.  It is then divided by three to account for using an average of three 
measurements as specified in Appendix A. 

Therefore, for the 2-point method, εr0 equals −9.486e−5 with a combined standard uncertainty 
(i.e., estimated standard deviation) of uc = 3.11e−6.  Since it can be assumed that the possible estimated 
values are approximately uniformly distributed with approximate standard deviation uc, the residual strain 
is believed to lie in the interval εr0 ± uc with a level of confidence of approximately 68 % assuming a 
Gaussian distribution.  This value for residual strain (i.e., εr0 = −9.486e−5) was found using the average 
value for the deflection in Trace “c” (i.e., defl = 3.785 µm), using winit = π/(2*5.8), and using 
L = 595.970 µm. 

 
3.4.1.3.  Comparing the Residual Strain and Uncertainties for the Presented 3PMFS and a  

  2-Point Method  
 

The residual strain values (assuming a zero, axial-compressive, critical force) from a fixed-fixed 
beam using the presented 3PMFS and a 2-point method along with the combined standard uncertainties 
were presented in the previous two sections.  For the 596 µm long, 18 µm wide fixed-fixed beam, the 
values for εr0 differ by 4.7 %.  For the combined standard uncertainty calculations, the probability 
distribution chosen to model each error component is given in Tables 5 and 6.  The combined standard 
uncertainty value for the 2-point method is over two times larger than that for the 3PMFS for this data set.  
With the 3PMFS, a more accurate and precise residual strain value results in comparison to a 2-point 
method.  Therefore, the presented 3PMFS is recommended for residual strain measurements.  Note the 
improved fit in Figure 19 using the 3PMFS. 

 
3.4.2. Strain Gradient Measurements and Uncertainties for a Cantilever 

 
A data set was obtained from a designed 396 µm long, 18 µm wide cantilever.  The strain gradient 

was found using both the presented 3PMFS and a 2-point method.  The assumptions for these two 
methods are given in Table 7.  The main sources of error for these two methods are given in the first 
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column of Tables 8 and 9.  The combined standard uncertainty, uc, for the strain gradient measurement is 
determined based on these errors, as presented in the next two sections. 

 
 
Table 7 – The Assumptions for the Presented 3PMFS and a 2-Point  
Method Using a Cantilever Test Structure to Find the Strain Gradient 

 
Cantilever 

 
Assumptions 

 
3PMFS 1.  Shape is an arc of a circle 

2.  No deformities exist in the cantilever 
2-Point Method 1.  Shape is an arc of a circle 

2.  Initial angle is zero 
3.  No deformities exist in the cantilever 

 
 
             
         Table 8 – Strain Gradient Measurements and Combined Standard Uncertainty Calculations  
          for a 396 µm Long, 18 µm Wide Cantilever Test Structure Using the 3PMFS 

 
3PMFS 
Error 

Components 

 
Lower Limit 

(a−)  
for sg  

 
Upper Limit 

(a+)  
for sg 

 
Interval’s 

Half-Width 
a = (a+ −a−) / 2 

 
(Rectangular 
Distribution) 

urect = a / sqrt(3) 
 

1.  data point 
     variations 

7.892 m−1 
(z2 = 5.600 µm) 

9.963 m−1 
(z2 = 5.640  µm) 

1.035 m−1 0.598 m−1 
 

2.  width  
     variations 

8.851 m−1 
(Trace “b”) 

8.928 m−1 
(Trace “c”) 

0.038 m−1 
 

0.022 m−1 
 

      
 uc = SQRT[3(u1pt)2/3 + (uW)2]  

uc = SQRT[3(0.598 m−1)2/3 + (0.022 m−1)2]  
uc = 0.598 m−1 

sg = 8.928 m−1 ± 0.598 m−1 
 
 
 

3.4.2.1.  Strain Gradient Measurements and Uncertainties Using the 3PMFS 
 

 As listed in Table 8, the first source of error for the cantilever using the 3PMFS is due to the three 
chosen data points.  Here, the z-data value for the centrally located data point (i.e., z2) was varied ±20 nm.  
The rectangular (or uniform) probability distribution is assumed.  Therefore, u1pt = 0.598 m−1.  The 
measurement uncertainty for each of the three data points is assumed to be the same. 

The second source of error is due to variations across the width of the cantilever.  The cantilever 
can be bowed or tilted.  Therefore, the strain gradient values from Traces “b,” “c,” and “d,” as shown in 
Figure 8, were found.  The values from Traces “b” and “c” are used for the lower and upper limits in 



 
 

 39

Table 8.  The rectangular probability distribution is assumed.  Therefore, uW = 0.022 m−1.  This value for 
uW is negligible for this data set; however, it is included due to its potential importance for other data sets. 
 The combined standard uncertainty is calculated at the bottom of Table 8 using the following 
formula: 
 

uc = SQRT[3(u1pt)2/3 + (uW)2]  . 
 
This simplified formula assumes that the terms are uncorrelated.  Note that (u1pt)2 is multiplied by three to 
account for the three data points.  It is then divided by three to account for using an average of three 
measurements as specified in Appendix A. 

Therefore, for the 3PMFS, sg equals 8.928 m−1 with a combined standard uncertainty (i.e., 
estimated standard deviation) of uc = 0.598 m−1.  Since it can be assumed that the possible estimated 
values are approximately uniformly distributed with approximate standard deviation uc, the strain gradient 
is believed to lie in the interval sg ± uc with a level of confidence of approximately 68 % assuming a 
Gaussian distribution.  This value for the strain gradient (i.e., sg = 8.928 m−1) was found using data from 
Trace “c.”   
 

Table 9 – Strain Gradient Measurements and Combined Standard Uncertainty Calculations  
            for a 396 µm Long, 18 µm Wide Cantilever Test Structure Using a 2-Point Method 

 
2-POINT 

METHOD 
Error 

Components 
 

 
Lower Limit 

(a−)  
for sg 

 
Upper Limit 

(a+)  
for sg 

 
Interval’s 

Half-Width 
a =(a+ − a−) /2

 
(Gaussian 

Distribution) 
u3σ = a / 3 

 
(Rectangular 
Distribution) 
urect=a/sqrt(3) 

1.  initial angle 
     variations 

−878.150 m−1 
(angle = +10°) 

888.870 m−1 
(angle = −10°) 

883.510 m−1 294.503 m−1  

2.  data point 
     variations 

5.162 m−1 
(z1 = 5.637  µm) 

5.677 m−1 
(z1 = 5.677 µm) 

0.258 m−1  0.149 m−1 

3.  width  
     variations 

5.350 m−1 
(Trace “b”) 

5.450 m−1 
(Trace “d”) 

0.050 m−1  0.029 m−1 

       
 uc = SQRT[(uangle)2 + 2(u1pt)2/3 + (uW)2] 

uc = SQRT[(294.503 m−1)2 + 2(0.149 m−1)2/3 + (0.029 m−1)2]   
uc = 294.503 m−1  

sg = 5.419 m−1 ± 294.503 m−1   
 
 
 

3.4.2.2.  Strain Gradient Measurements and Uncertainties Using a 2-Point Method 
 
 As listed in Table 9, the first source of error for the cantilever using a 2-point method is due to 
initial angle variations.  This angle can be positive or negative.  As given in this table, the lower and upper 
limits are chosen to be ±10°.  A Gaussian function is assumed as the probability distribution function.  
Therefore, the measurement uncertainty due to the initial angle, uangle, is uangle = 294.503 m−1. 
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The second source of error is due to the two chosen data points.  Here the z-data value of one of 
the chosen data points in Trace “c,” as shown in Figure 8, was varied ±20 nm.  The rectangular (or 
uniform) probability distribution function is assumed.  Therefore, u1pt = 0.149 m−1.  The measurement 
uncertainty for both data points is assumed to be the same.  This value for u1pt is negligible for this data 
set considering the huge uncertainty associated with initial angle variations. 

The third source of error is due to variations across the width of the cantilever.  The cantilever can 
be bowed or tilted.  Therefore, the strain gradient values from Traces “b,” “c,” and “d,” as shown in 
Figure 8, were found.  The values from Traces “b” and “d” are used for the lower and upper limits in 
Table 9.  The rectangular probability distribution function is assumed.  Therefore, uW = 0.029 m−1.  This 
value for uW is negligible for this data set considering the huge uncertainty associated with initial angle 
variations. 

The combined standard uncertainty, uc, is calculated at the bottom of Table 9 using the following 
formula: 
 

uc = SQRT[(uangle)2 + 2(u1pt)2/3 + (uW)2]  . 
 
This simplified formula assumes that the terms are uncorrelated.  Note that (u1pt)2 is multiplied by two to 
account for the two data points.  It is then divided by three to account for using an average of three 
measurements as specified in Appendix A. 

Therefore, for the 2-point method, sg equals 5.419 m−1 with a combined standard uncertainty (i.e., 
estimated standard deviation) of uc = 294.503 m−1.  The first error component dominates.  Since it can be 
assumed that the possible estimated values for this error component are approximately Gaussian, as 
specified above, with approximate standard deviation uc, the strain gradient is believed to lie in the 
interval sg ± uc with a level of confidence of approximately 68 % assuming a Gaussian distribution.  This 
value for the strain gradient (i.e., sg = 5.419 m−1) was found using an initial angle of zero and using data 
points from Trace “c.” 
 

3.4.2.3.  Comparing the Strain Gradient Measurements and Uncertainties for the Presented 
        3PMFS and a 2-Point Method  

 
 The strain gradient values from a cantilever using the presented 3PMFS and a 2-point method 
along with the combined standard uncertainties were presented in the previous two sections.  The values 
for sg differ by 39 %.  For the combined standard uncertainty calculations, the probability distribution 
chosen to model each error component is given in Tables 8 and 9.  The combined standard uncertainty for 
the 2-point method is over 490 times larger than that for the 3PMFS for this data set.  Therefore, the 
presented 3PMFS is recommended for strain gradient measurements.  A more accurate and precise strain 
gradient value results in comparison to a 2-point method.  Note the improved fit in Figure 20 using the 
3PMFS. 
 
 

4.  SUMMARY AND CONCLUSIONS 
 

ASTM Task Group E08.05.03 on Structural Films for MEMS and Electronic Applications is 
developing at least three standard test methods for MEMS using optical interferometry -- one on in-plane 
length measurements, one on residual strain measurements, and one on strain gradient measurements.  
These test methods are needed to improve measurements in critical MEMS applications.  This need is 
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exemplified in the findings of an ASTM Round Robin Experiment that discovered wide variations in 
measurements.  This NISTIR provides the technical basis for the proposed standard test methods. 
 The method on in-plane length measurements using the LMTEM was presented in Section 2.  
In-plane length measurements include in-plane linelengths and in-plane deflection measurements.  A 
step-by-step guide was given.  For the three classes of in-plane linelength structures (two ends anchored, 
one end anchored, and two ends unanchored), the steps were followed in an example for each class.  For 
the two types of in-plane deflection measurements (released part to released part, and released part to 
fixed location), these steps were once again followed in an example for each type.  Using this step-by-step 
guide, in-plane resonating structures can be analyzed at their peak deflections. 

Using the LMTEM as presented in this NISTIR will tighten the variations in comparison 
measurements.  The in-plane length of an approximate 1100 µm long fixed-fixed beam has a combined 
standard uncertainty value, uc, of 2.0 µm.  Using an optical microscope, uc equals 4.0 µm for the same 
measurement.  Thus, for in-plane length measurements, the optical interferometer is preferred over the 
optical microscope because smaller values for the combined standard uncertainty are obtained with the 
optical interferometer.  It is recommended, however, that measurements be made with both instruments.  
The values to be reported are those from the interferometer using the LMTEM.  Measurements from the 
microscope are used simply as a double check.  The highest magnification possible is used for the given 
measurement to reduce the combined standard uncertainty value. 
 The method on out-of-plane measurements and residual strain and strain gradient calculations 
using the 3PMFS was presented in Section 3.  Functions (such as the cosine or circular functions) are 
recommended to describe these measurements, depending on the end conditions.  For example, two 
cosine functions characterize the out-of-plane shape of fixed-fixed beams.  These functions are merged at 
the peak (or valley) measurement.  A circular function describes the out-of-plane shape of cantilevers.53 
Three data points define each function that characterizes the out-of-plane shape of the structure.   
 To find the length of a curved structure, the residual strain, and the strain gradient, follow the 
step-by-step guide for measurements and calculations given in section 3.1.  For the three classes of 
structures (two ends anchored, one end anchored, and two ends unanchored), the steps were followed in 
an example for the first two classes.  In the first class of structures, a fixed-fixed beam was used.  The 
length of the curved fixed-fixed beam and the residual strain were found.  In the second class of 
structures, a cantilever was used.  The length of the curved cantilever and the strain gradient were found.  
The length of the curved structures in the third class are found using similar strategies.  Using this 
step-by-step guide, out-of-plane resonating structures can be analyzed at their peak deflections. 
 The 3PMFS is recommended for residual strain and strain gradient calculations for more accurate 
and precise results as compared to a 2-point method.  Using a fixed-fixed beam test structure, the percent 
difference in the residual strain between these two methods was 4.7 %.  The combined standard 
uncertainty for the 2-point method is over two times larger than that for the 3PMFS for this data set.  For 
a cantilever test structure, the percent difference in the value for the strain gradient between the 3PMFS 
and a 2-point method was 39 %.  The combined standard uncertainty for the 2-point method is over 490 
times larger than that for the 3PMFS for this data set.  Thus, the 3PMFS dramatically improves the 
calculated residual strain and strain gradient values as well as the combined standard uncertainty values. 

 
 
 
 

                                                           
53  A linear strain profile through the thickness of the cantilever before it is released from the surrounding sacrificial layer is 
assumed in the analysis. 
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APPENDIX A.  DEFINITIONS, INTERFEROMETER SPECIFICS, 
AND TEST STRUCTURE SPECIFICS  

 
This appendix begins in section A.1 with the definitions of terms used throughout this report.  The 

following five sections (A.2 through A.6) include an overview of interferometer specifications, theory, 
calibration, operation, and data preparation.  Given the different interferometers on the market, an effort 
was made to make this overview as generic as possible.54  The remaining three sections (A.7 through A.9) 
include test structure layer configuration, design, and viable structure identification.    

 
A.1.  Definitions 
 

The following terms and definitions are used throughout this report: 
 

1.  2-D data trace − a two-dimensional data trace that is parallel to the xz- or yz-plane and is 
extracted from the topographical 3-D data set.  The xy-plane is parallel to the underlying 
layer (see Figs. 1 and 3).  The interferometer’s x-axis is typically aligned parallel or 
perpendicular to the transitional edges to be measured.  

2.  3-D data set − a three-dimensional data set with a topographical z-data value for each (x, y)  
pixel location within the interferometer’s field of view.   

3.  anchor – the portion of the test structure where the mechanical layer makes contact with the 
underlying layer (see Figs. 1 and A.1). 

4.  anchor lip – the extension of the mechanical layer around the edges of the anchor (see Figs. 3  
and A.1). 

5.  cantilever – a test structure that consists of a beam suspended in air and anchored at one end 
(see Figs. 2, 8, 17, and A.1). 

6.  fixed-fixed beam – a test structure that consists of a beam suspended in air and anchored at both 
ends (see Figs. 1 and 3).  

7.  in-plane length measurement – a length (or deflection) measurement made parallel to the 
underlying layer (or the xy-plane). 

8.  interferometer − a non-contact optical instrument (such as shown in Fig. A.2) used to obtain 
topographical 3-D data sets. 

9.  mechanical layer − the patterned layer (as shown in Fig. A.1) that is anchored to the underlying 
layer where cuts are designed in the sacrificial layer and that is suspended in air where no  
cuts are designed in the sacrificial layer.  

10.  out-of-plane − perpendicular (in the z-direction) to the underlying layer. 
11.  out-of-plane measurements − measurements taken on structures that are curved out-of-plane 

in the z-direction. 
12.  residual strain – the strain present in the mechanical layer after fabrication yet before the 

sacrificial layer is removed. 
13.  sacrificial layer – the layer fabricated between the mechanical layer and the underlying layer. 

This layer is removed after fabrication.  If cuts are designed in this sacrificial layer (as 
shown in Fig. A.1), an anchor is created allowing the mechanical layer to contact the 
underlying layer in that region. 

14.  stiction – a structure exhibits this when a non-anchored portion of the mechanical layer 
                                                           
54  In this report, commercial equipment or instruments may be identified.  This does not imply recommendation or 
endorsement by NIST, nor does it imply that the equipment or instruments are the best available for the purpose. 
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adheres to the top of the underlying layer. 
15.  strain gradient – the positive difference in the strain between the top and bottom of a  

cantilever divided by its thickness. 
16.  test structure – a structure (such as, a fixed-fixed beam or cantilever) that is used to extract 

information (such as, the residual strain or the strain gradient of a mechanical layer) about  
a fabrication process.  

17.  transitional edge − an edge of a MEMS structure (such as Edge “1” in Fig. 3) that is 
characterized by a distinctive out-of-plane vertical displacement (as shown in Fig. 4). 

18.  underlying layer −  the layer directly beneath the mechanical layer after the sacrificial layer is 
removed. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1.  Design recommendations for a cantilever test structure.   
 

 
 
 
A.2.  Specifications 
 
 The non-contact optical interferometer must be capable of obtaining a topographical 3-D data set 
and has software that can export a 2-D data trace.  Figure A.2 is a sketch of a suitable interferometer.  
However, any non-contact optical interferometer that has pixel-to-pixel spacings as specified in Table A.1 
and that is capable of performing the test procedure with a vertical resolution less than 1 nm is permitted.  
Obtaining this resolution may be done by averaging multiple measurements.  The interferometer must be 
capable of measuring step heights from 0.1 nm to at least 10 µm higher than the step height to be 
measured. 
 
 
 
 
 

y

x

underlying
layer 

> 5.0 µm 
L > 350 µm

> 50 µm 

mechanical layer 

> 5.0 µm 

> 5.0 µm 

> 50 µm 

> 50 µm 

anchor > 5.0 µm and < 10.0 µm 

> 5.0 µm 
and 

< 10.0 µm 
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Figure A.2.  Sketch of optical interferometer [16]. 
 
 

Table A.1 – Interferometer Pixel-to-Pixel Spacing Requirements 
Magnification Pixel-to-pixel spacing 

5× < 1.57 µm 
10× < 0.83 µm 
20× < 0.39 µm 
40× < 0.21 µm 
80× < 0.11 µm 

 
 
A.3.  Theory 
 
 The optical interferometer sketched in Figure A.2 is used to determine surface profiles.  A beam 
splitter separates the incident white light that later recombines to form interference fringes.  The incident 
white light travels through the microscope objective to the beam splitter.  Half of the light travels to the 
sample surface and then back to the beam splitter.  The other half is reflected to a reference surface and 
then back to the beam splitter.  These two paths of light recombine at the beam splitter to form 
interference light fringes. 
 As the interferometer scans downward, an intensity envelope incorporating these fringes (as 
shown in Fig. A.3) is determined by the software.  The center of mass of this intensity envelope is used in 
determining the sample height at that pixel location.55  The surface profile is found by collecting sample 
height data for each pixel within the field of view.   
 

                                                           
55  This analysis technique may be specific to certain interferometers. 
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Figure A.3.  The center of mass of the intensity envelope determines the height of the sample. 
 

 
A.4.  Calibration 
 
 Calibrate the interferometer in both the xy-plane and the out-of-plane z-direction.  Do this for each 
combination of lenses used for the measurements.  Calibration in the xy-plane is recommended on a 
yearly basis. 

For calibration in the xy-plane, use a 10 µm-grid ruler.  If the ruler is not reflective, perform the 
following steps: 

1. Orient the ruler in the x-direction using crosshairs, if available.   
2. Record the maximum field of view in the x-direction, ruler-x, as measured on the 

interferometer’s screen. 
3. Orient the ruler in the y-direction using crosshairs, if available.   
4. Record the maximum field of view in the y-direction, ruler-y, as measured on the 

interferometer’s screen.  
5. Determine the x- and y-calibration factors using the following equations: 
 

x-calibration factor = ruler-x / inter-x   , and 
  y-calibration factor = ruler-y / inter-y 

 
where inter-x is the interferometer’s maximum field of view in the x-direction and inter-y 
is the interferometer’s maximum field of view in the y-direction.   

6. Multiply the x- and y-data values obtained during a data session by the appropriate calibration  
factor to obtain calibrated x- and y-data values. 

 
If the 10 µm-grid ruler is reflective, perform the following steps that will account for distortion in 

the interferometric lenses: 
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1. Orient the ruler in the x-direction along the bottom edge of the field of view using crosshairs 
(if available).   

2. Select the detector array size that achieves the best lateral resolution.   
3. Adjust the intensity with respect to the brightest layer of interest.   
4. Eliminate any tilt in the sample by nulling the fringes on the top of the flattest region of the 

ruler. 
5. Recheck the sample alignment.   
6. Take an average of at least three measurements to comprise one 3-D data set.   
7. Move the ruler slightly in the y-direction and obtain another 3-D data set.   
8. Continue until the ruler is out of the field of view.  At least five data sets representative of the 

field of view should be obtained.   
9. For each data set, extract a 2-D data trace in the xz-plane at the same location on the ruler, if 

possible.   
10. Record in tabular form the ruler measurements versus x for each y.  
11. Orient the ruler in the y-direction along the left-hand edge of the field of view.  Repeat the 

above steps in a similar manner.  (This step can be skipped if the in-plane measurements 
are restricted to the x-direction due to a smaller pixel-to-pixel spacing in that direction.) 

12. By interpolating and/or extrapolating, use the newly created calibrated lookup tables to find 
the calibrated x (and/or y) values for pertinent pixels within the field of view. 
 

 To calibrate the interferometer in the out-of-plane z-direction, use the certified value of a double-
sided step height standard56 as follows: 

1. Before the data session, record the height of the step height standard at six locations, three on 
each side of the step height standard.  Use six, 3-D data sets to accomplish this task. 

2. After the data session, record the height of the step height standard at six locations, three on 
each side of the step height standard.  Use six, 3-D data sets to accomplish this task. 

3. Calculate the mean value of the twelve measurements. 
4. Determine the calibration factor using the following equation: 

 
z-calibration factor = certified value / mean value   . 

 
5. Multiply the z-data values obtained during the data session by the z-calibration factor to obtain 

calibrated z-data values. 
 
A.5.  Operation 
 

A reliable 3-D data set is required for analysis.  Follow the recommended practices given in the 
interferometer’s operations manual [16].  Additional guidelines for the operation of the interferometer to 
obtain a reliable 3-D data set are as follows: 

 
  1.  Use the most powerful objective possible (while choosing the appropriate field of view 

lens, if applicable) given the sample areas to be investigated, 
  2.  Select the detector array size that achieves the best lateral resolution, 
  3.  Visually align the sample in the field of view using crosshairs (if available), 
                                                           
56  Calibrating the step height at NIST lowers the total uncertainty in the certified value.  The step heights are calibrated using a 
stylus instrument as specified in the references [17-18]. 
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  4.  Adjust the intensity with respect to the brightest layer of interest, 
 5.  Eliminate any tilt in the sample by nulling the fringes on the top of the underlying layer, 
 6.  Recheck the sample alignment, and 

  7.  Take an average of at least three measurements to comprise one 3-D data set. 
 
A.6.  Data Preparation 
 
 After a 3-D data set is obtained, the data are prepared for analysis.  The guidelines for this 
preparation are as follows: 
 

1.  If the field of view is much larger than what is needed, select a subset of this 3-D data 
set, if possible. 

2. Using the interferometric software, level the 3-D data set (or subset) with respect to the 
top of the underlying layer.  Level it as symmetrically as possible around the 
structure of interest. 

3.  Within the 3-D data set (or subset), choose the 2-D data traces of interest.  Export these 
traces from the interferometer’s software package.  Import the traces into a plotting 
package. 

4.  Scale the x- (or y-) and z-data values using their respective calibration factors.  Plot 
the calibrated 2-D data traces. 
 

A.7.  Layer Configuration 
 
 For a simplified understanding of the layer configuration for a surface micromachined MEMS 
structure, refer to Figure A.1.  The underlying layer is beneath the entire test structure.  The mechanical 
layer is included in both the light and dark gray areas.  Any dark gray areas (the anchors) are the designed 
cuts in the sacrificial layer.  This is where the mechanical layer contacts the underlying layer.  The light 
gray area is suspended in air after fabrication. 
 
A.8.  Structure Design 

 
Design recommendations for a cantilever test structure (from which the strain gradient is found) 

are given in Figure A.1.  These recommendations are similar for fixed-fixed beam test structures (from 
which the residual strain is found).  The recommendations are as follows: 

 
1.  The cantilever should be wide enough (for example, 5 µm wide) such that obtaining a 2-D data 

trace (such as Trace “c” in Fig. 8) along its length is not a difficult task.   
2.  The cantilever should be long enough (for example, L > 350 µm)57 such that it exhibits 

out-of-plane curvature in the z-direction (as shown in Figs. 2 and 17). 
3.  The anchor lips between Edges “1” and “3” in Figure 8 and between Edges “4” and “5” should  

be wide enough to include at least three data points.58  If the pixel-to-pixel spacing is  
1.56 µm, then these anchor lips should be at least 3.2 times greater (or 5.0 µm).  At the 
same time, they should be less than or equal to 10.0 µm wide. 

                                                           
57  For fixed-fixed beams, the length should be at least 400 µm. 
58  For fixed-fixed beams, the anchor lip between Edges “1” and “3” in Figure 3 and between Edges “2” and “4” should be 
wide enough to include at least three data points. 
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4.  The cut in the sacrificial layer that defines the anchor should be at least 50 µm by 50 µm to 
determine if the cantilever has adhered to the top of the underlying layer as ascertained in 
this appendix. 

5.  The anchor should extend beyond the width of the cantilever in the ± y-directions (for example, 
at least 5.0 µm) such that obtaining Traces “a” and “e” in Figure 8 is not a difficult task.  

6.  There should be only one cantilever for each anchor. 
7.  The underlying layer should be un-patterned beneath the mechanical layer and should extend at 

least 5.0 µm beyond all edges of the mechanical layer.  However, the underlying layer 
should extend at least 50 µm beyond the anchor lip in the minus x-direction to ascertain if  
the cantilever has adhered to the top of the underlying layer, if necessary. 

8.  A sufficient number of cantilevers (preferably of different lengths) should be fabricated in 
order to obtain at least one cantilever after fabrication, which exhibits out-of-plane 
curvature in the z-direction and which has not adhered to the top of the underlying layer. 

 
A.9.  Viable Structure Identification 
 

A reliable 3-D data set can only be found from a viable structure.  To find a viable structure, use 
an optical microscope to look for debris, damage, or design flaws.  If these are not present, it is a viable 
structure if it has not adhered to the top of the underlying layer.  To determine if a structure has adhered to 
the top of the underlying layer (that is, exhibiting stiction), do the following: 
 

1. Using the guidelines specified in section A.5, obtain a 3-D data set of the structure 
including an adjacent, large (at least 50 µm by 50 µm) anchor area. 

2.  Follow the steps in the data preparation section above. 
a. Within the 3-D data set, choose a 2-D data trace along the structure including   

 the large anchor area. 
   b.  Plot the 2-D data trace. 

3.  Examine the 2-D data trace. 
4.  Locate the point of maximum deflection along the structure with respect to the anchor 

lip.  Record the z value, zreg#1, of this data point.  If neighboring points have similar 
z values such that a ‘flat’ region exists, define this group of points as region #1 
(refer to Fig. A.4). 

5.  Define region #2 as a group of points within the large anchor area (refer to Fig. A.4). 
Record a representative z value, zreg#2, within this region. 

 6.  Calculate B1 as defined in equation (A1) below:  
 

B1 = zreg#1 – zreg#2   .     (A1) 
  
  7.  Calculate B2 as defined by one of the following equations: 

 
    B2 = H + J   , or     (A2) 

                      B2 = t − A + J     (A3) 
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where H is the anchor etch depth (as shown in Fig. A.5) and J accounts for the 
roughness of the underside of the suspended layer59 in the z-direction, the 
roughness of the topside of the underlying layer, any residue present between these 
layers, and the tilting associated with the suspended layer (as shown in Figs. A.5, 
A.6, and A.7).  Consult the reference [19] for more details.  In equation (A3), t is 
the thickness of the suspended layer and A is the minimum thickness of this layer as 
measured from region #2 to the top of the underlying layer as specified in the 
reference [19].  Use equation (A2) if H is known more precisely than the quantity 
(t − A).  Otherwise, use equation (A3) to find B2. 

8.  The structure is adhered to the top of the underlying layer if60 
a. Twenty points or more are within region #1 and B1 < B2 + 120 nm.  It is 

believed that the existence of a substantial ‘flat’ region that alters the structure’s 
natural shape is the primary indicator of an adhered structure, or 

b. Less than 20 points are within region #1 and B1 < B2 + 100 nm.  Determining if 
the structure is adhered at one point along the length of the structure is a 
difficult task.  Therefore, this criteria errs on the conservative side. 
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Figure A.4.  An example of a 2-D data trace taken along a fixed-fixed beam test structure.   
This data trace reveals that this particular structure is severely  

adhered to the top of the underlying layer. 
 

                                                           
59  This roughness is equivalent to the roughness of the topside of the sacrificial layer directly beneath the suspended 
mechanical layer. 
60  The adherence criteria that follows will become more precise as fabrication processes and measurements improve.  
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Figure A.5.  A schematic illustration (not to scale) of a cross-sectional side view  
of a severely pegged cantilever test structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.6.  A schematic illustration (not to scale) of the component parts of dimension J,  
which is shown in Figure A.5.  This view is along the length of the structure  

where it has adhered to the top of the underlying layer. 
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Figure A.7.  A schematic illustration (not to scale) of the component parts of dimension J,  
which is shown in Figures A.5 and A.6.  This view is along the width of the structure  

where it has adhered to the top of the underlying layer. 
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APPENDIX B.  FIXED-FIXED BEAM LENGTH DETERMINATION FOR CURVE #2 IN FIGURE 18 
 
 A fixed-fixed beam test structure is shown in Figures 1 and 3.  Recall, in section 3.2.1, the data 
trace (“b,” “c,” or “d”) along the fixed-fixed beam, as shown in Figure 5.  The extraneous data points at 
both ends of the data trace were eliminated and the remaining data set divided into two data sets, as shown 
in Figure 18.  The division occurred at the x value corresponding to the maximum z-data value with this 
data point included in both data sets.  The length of the first curve (between x1ave and x3F) represented by 
the first data set was found in sections 3.2.1.1 through 3.2.1.4.  The length of the second curve (between 
x1S and x2ave) represented by the second data set is found in this appendix. 
 
B.1.  Obtain the Inputs 
 

From section 3.2.1.1, the inputs for the second data set include the following: 
 

1.  The first data point (x1S, z1S),  
2.  A final data point (x3S, z3S) such that x3S < x2ave where x2ave is an endpoint of the in-plane  

linelength measurement, L, as calculated in equation (7),  
3.  A centrally located data point (x2S, z2S) such that x1S < x2S < x3S and preferably located at or near  

the inflection point, and 
4.  The endpoint of the in-plane linelength measurement, L, (i.e., x2ave) that is calculated using 

equation (7). 
 
B.2.  Solve Three Equations for Three Unknowns 
 

The cosine function used to model the second data set is given in equation (9).  There are three 
equations to be numerically solved for three unknowns.  The unknowns are w2S, w3S, and AS.  The curves 
are merged at w3F = π = w1S.  The three equations are as follows: 
 

    w2S = w3S + (w3S – π)(x2S – x3S) / (x3S – x1S)    ,   (B1) 
z2S = s*AS*cos(w2S) + z1S + s*AS   , and   (B2) 
z3S = s*AS*cos(w3S) + z1S + s*AS   .    (B3) 

 
Equation (B1) was obtained by substituting x2S and w2S into equation (10).  For the second two equations, 
(w2S, z2S) and (w3S, z3S) are inserted into equation (9). 
 From equations (B2) and (B3), the following two equations are derived: 
 
                 AS = s*(z3S – z1S) / (cos(w3S) + 1)   , and   (B4) 

       z2S = [(z3S – z1S)cos(w2S) + z1Scos(w3S) + z3S] / (cos(w3S) + 1)   .  (B5) 
 
The derivations of these equations can be found in Appendix C.  
 To find the three unknowns (w2S, w3S, and AS), the following iterative numerical approach is taken: 
 
  1.  Assume w3S = 2π and w3S∆ = π/2 where w3S∆ is an assigned increment which gets 

smaller with each iteration, as shown in step 6 below. 
2.  Solve equation (B1) to find w2S.  
3.  Solve equation (B5) to find z2S. 
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4.  If the data value for z2S is greater than the calculated value for z2S,  
let w3S = w3S − w3S∆ for upward bending beams (i.e., when s = −1).61   

5.  If the data value for z2S is less than the calculated value for z2S,  
let w3S = w3S + w3S∆ for upward bending beams.62 

6.  Let w3S∆ = w3S∆ /2. 
7.  Repeat steps 2 through 6 until z2Scalc =  z2Sdata to the preferred number of significant 

digits.63  
8.  Solve equation (B4) for AS.  

 
In this way, the three unknowns (w2S, w3S, and AS) are calculated. 
 
B.3.  Plot the Function with the Data 
 
 The second set of data (such as shown in Fig. 18) can now be plotted along with equation (9).  
Notice the tight fit of the function to the data in Figure 19 using the 3PMFS.  If one of the three chosen 
data points is not representative of the data, alter its z value and repeat the analysis.64 
 
B.4.  Calculate the Length of the Second Curve 
 
 The length of the second curve, LcS, is found as follows: 
 
  1.  Obtain similar units (e.g., π units) on both axes. 

Use v = Aπ-units*cos(w)  
where  Aπ-units = AS* (w2ave − π) / (x2ave − x1S) 
and w2ave is the value for w when x = x2ave in equation (10). 

  2.  Divide the curve along the w-axis into 1000 equal segments between π and w2ave.65 
  3.  Calculate the length of each segment using the Pythagorean theorem 
   Lseg = SQRT [(wnext – wlast)2 + (vnext – vlast)2] . 
  4.  Sum the lengths of the segments 
   Lπ-units = Σ Lseg . 
  5.  Convert to the appropriate units 
   LcS =  Lπ-units * (x2ave − x1S) / (w2ave − π) . 
 
Use equation (16) to calculate the total length, Lc, of the fixed-fixed beam.  

                                                           
61  For downward bending beams, let w3S = w3S + w3S∆. 
62  For downward bending beams, let w3S = w3S − w3S∆. 
63  Repeating these steps 1000 times in a computer program undoubtedly accomplishes this task. 
64  If the NIST Web pages are used to perform the analysis, this is simply done by changing one input value. 
65  The value for w2ave is chosen because this is the endpoint of the in-plane linelength (in terms of w) as found in equation (7).  
The length of the curved structure will ultimately be compared in the residual strain calculation with the in-plane linelength.  
Therefore, the endpoints of the in-plane linelength measurement are used to calculate the length of the curved structure. 
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APPENDIX C.  DERIVATIONS OF FIXED-FIXED BEAM EQUATIONS (14), (15), (B4), AND (B5) 
 
 This appendix presents the derivations of equations (14), (15), (B4), and (B5) for fixed-fixed 
beams.  The first section presents the derivations of equations (14) and (15) for curve #1 (as shown in 
Fig. 18).  The second section presents the derivations of equations (B4) and (B5) for curve #2. 
 
C.1.  Derivations of Equations (14) and (15) for Curve #1 
 
 The basic equation for fixed-fixed beams for curve #1 was presented in equation (8) in section 
3.2.1.2 as follows: 
 

z = s*AF*cos(w) + z3F + s*AF  . 
 
Inserting data point (w1F, z1F) into this equation produces the following: 
 

z1F = s*AF*cos(w1F) + z3F + s*AF   , 
z1F − z3F = s*AF (cos(w1F) + 1)   , and 

AF = (z1F − z3F ) / [s*(cos(w1F) + 1)]   . 
 

Recall that s = 1 or s = −1.  Therefore, 
 

         AF = s*(z1F − z3F ) / (cos(w1F) + 1)   ,    (C1) 
z1F − z3F = s*AF cos(w1F) + s*AF   , 

s*AF cos(w1F) = z1F − z3F  − s*AF   , and 
        cos(w1F) = (z1F − z3F  − s*AF) / (s*AF)   .   (C2) 

 
Inserting data point (w2F, z2F) into equation (8) produces the following: 
 

z2F = s*AF*cos(w2F) + z3F + s*AF   , 
z2F − z3F = s*AF (cos(w2F) + 1)   , 

AF = (z2F − z3F ) / [s*(cos(w2F) + 1)]   , and 
          AF = s*(z2F − z3F ) / (cos(w2F) + 1)   .    (C3) 

 
Plugging equation (C3) into equation (C2) results in the following: 
 

cos(w1F) = [z1F − z3F  − s*s*(z2F − z3F ) / (cos(w2F) + 1)] / [s*s*(z2F − z3F ) / (cos(w2F) + 1)]   , 
cos(w1F) = [[(z1F − z3F )(cos(w2F) + 1) − (z2F − z3F )] / (cos(w2F) + 1)] / [(z2F − z3F ) / (cos(w2F) + 1)]   , 

cos(w1F) = [(z1F − z3F )(cos(w2F) + 1) − (z2F − z3F )] / (z2F − z3F )   , 
cos(w1F) = [z1F (cos(w2F) + 1) − z3F (cos(w2F) + 1) − z2F + z3F ] / (z2F − z3F )   , 
cos(w1F) = [z1F cos(w2F) + z1F  − z3F cos(w2F) − z3F  − z2F + z3F ] / (z2F − z3F )   , 

cos(w1F) = [z1F cos(w2F) + z1F  − z3F cos(w2F) − z2F ] / (z2F − z3F )   , and 
cos(w1F) = [(z1F − z3F)cos(w2F) + z1F − z2F ] / (z2F − z3F )   . 

 
Solving for z2F: 
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(z2F − z3F )cos(w1F) = (z1F − z3F)cos(w2F) + z1F − z2F   , 
z2F cos(w1F) − z3F cos(w1F) = (z1F − z3F)cos(w2F) + z1F − z2F   , 
z2F cos(w1F) + z2F = (z1F − z3F)cos(w2F) + z1F + z3F cos(w1F)   , 

z2F (cos(w1F) + 1) = (z1F − z3F)cos(w2F) + z1F + z3F cos(w1F)   , and 
            z2F = [(z1F − z3F)cos(w2F) + z3F cos(w1F) + z1F] / (cos(w1F) + 1)   .  (C4) 

 
Equation (C1) is equation (14) and equation (C4) is equation (15). 
 
C.2.  Derivations of Equations (B4) and (B5) for Curve #2 
 

The basic equation for fixed-fixed beams for curve #2 was presented in equation (9) in section 
3.2.1.2 as follows: 
 

z = s*AS*cos(w) + z1S + s*AS    . 
 

Inserting data point (w3S, z3S) into this equation produces the following: 
 

z3S = s*AS*cos(w3S) + z1S + s*AS   , 
z3S − z1S = s*AS [cos(w3S) + 1]   , and 
AS = (z3S − z1S ) / [s*(cos(w3S) + 1)]   . 

 
Recall that s = 1 or s = −1.  Therefore, 

 
          AS = s*(z3S − z1S ) / (cos(w3S) + 1)   ,    (C5) 

z3S − z1S = s*AS cos(w3S) + s*AS   , 
s*AS cos(w3S) = z3S − z1S  − s*AS   , and 

        cos(w3S) = (z3S − z1S  − s*AS) / (s*AS)   .    (C6) 
 
Inserting data point (w2S, z2S) into equation (9) produces the following: 
 

z2S = s*AS*cos(w2S) + z1S + s*AS   , 
z2S − z1S = s*AS (cos(w2S) + 1)   , 

AS = (z2S − z1S ) / [s*(cos(w2S) + 1)]   , and 
           AS = s*(z2S − z1S ) / (cos(w2S) + 1)   .    (C7) 

 
Plugging equation (C7) into equation (C6) results in the following: 
 

cos(w3S) = [z3S − z1S  − s*s*(z2S − z1S ) / (cos(w2S) + 1)] / [s*s*(z2S − z1S ) / (cos(w2S) + 1)]   , 
cos(w3S) = [[(z3S − z1S)(cos(w2S) + 1) − (z2S − z1S )] / (cos(w2S) + 1)] / [(z2S − z1S ) / (cos(w2S) + 1)]   , 

cos(w3S) = [(z3S − z1S)(cos(w2S) + 1) − (z2S − z1S )] / (z2S − z1S )   , 
cos(w3S) = [z3S (cos(w2S) + 1) − z1S(cos(w2S) + 1) − z2S + z1S ] / (z2S − z1S )   , 
cos(w3S) = [z3S cos(w2S) + z3S  − z1S cos(w2S) − z1S − z2S + z1S ] / (z2S − z1S )   , 

cos(w3S) = [z3S cos(w2S) + z3S  − z1S cos(w2S) − z2S] / (z2S − z1S )   , and 
cos(w3S) = [(z3S − z1S )cos(w2S) + z3S − z2S] / (z2S − z1S )   . 
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Solving for z2S: 
 

(z2S − z1S )cos(w3S) = (z3S − z1S )cos(w2S) + z3S − z2S   , 
z2S cos(w3S) − z1S cos(w3S) = (z3S − z1S )cos(w2S) + z3S − z2S   , 
z2S cos(w3S) + z2S = (z3S − z1S )cos(w2S) + z3S + z1S cos(w3S)   , 

z2S (cos(w3S) + 1) = (z3S − z1S )cos(w2S) + z3S + z1S cos(w3S)   , and 
z2S = [(z3S − z1S )cos(w2S) + z1S cos(w3S) + z3S] / (cos(w3S) + 1)   .  (C8) 

 
Equation (C5) is equation (B4) and equation (C8) is equation (B5). 
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APPENDIX D.  RESIDUAL STRAIN CALCULATION 
 

This appendix gives the calculation of residual strain (assuming a non-zero, axial-compressive, 
critical force) as determined from a fixed-fixed beam test structure.  This strain is present in the material 
after fabrication yet before the sacrificial layer is removed.  The residual strain [20] consists of both 
thermal strain66 and intrinsic strain.67  The calculation of compressive68 residual strain can be performed 
on-line [14] in a matter of seconds.   

This appendix is divided into the following sections:  (1) the basic definition of strain, (2) the 
basic equation for the residual strain, εr, (3) the basic residual strain equation expressed with two terms, 
(4) the theoretical understanding of the two terms, (5) Euler’s formula, (6) the moment of inertia, (7) 
Hooke’s law, (8) a formula for the length, L0, with zero applied force, (9) the determination of the 
effective lengths, Le and Le′, and (10) calculating L0 and εr. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D.1.  A 2-D depiction of a beam when the applied force, P, is (a) zero,  
(b) tensile, and (c) compressive. 

 
 

                                                           
66  Thermal strain results from the cooling of a film from a strain-free state at the deposition temperature to a different 
temperature while attached to a substrate with a different coefficient of thermal expansion. 
67  The intrinsic strain describes that portion of the residual strain that cannot be accounted for by thermal mismatch.  It can 
arise from non-equilibrium chemical reactions, non-ideal crystal structures, rapid deposition, and plastic deformation.  
Oftentimes, it can be modified by annealing. 
68  This calculation is not appropriate for layers with a tensile residual strain. 

(a) Lall forces=0 

(b) 

P 
(tensile)

∆L > 0

LP=0 
LP≠0 

Fixed 
end 

(c) 

∆L < 0 

LP=0 

P 
(compressive)

LP≠0 

Fixed 
end 



 
 

 61

D.1.  The Basic Definition of Strain 
 

The basic equation for longitudinal strain, ε , [21-22] is as follows: 
 

ε = (LP≠0 – LP=0) / Lall forces=0     (D1) 
 

where LP=0 is the length when the force P is zero (see Fig. D.1), LP≠0 is the length when the force P is 
applied, and Lall forces=0 is the length when all axial forces are zero.  The force is tensile when there is an 
increase in length with applied force.  This implies that ∆L = (LP≠0 – LP=0) > 0 such that ε > 0.  The force 
is compressive when there is a decrease in length with applied force (i.e., ∆L < 0 such that ε < 0). 
 
D.2.  The Basic Equation for the Residual Strain, εr 
 
 To determine the basic equation for the residual strain, refer to Figure D.2.  The fixed-fixed beam 
before the sacrificial layer is removed is depicted in Figure D.2(d).  This fixed-fixed beam after release 
with no applied forces is depicted in Figure D.2(a).69  Therefore, considering equation (D1) and referring 
only to Figures D.2(a) and (d), the residual strain can be written as follows: 
 

εr = (L – L0) / L0     (D2) 
 
where the definition of L and L0 are given in Table D.1 along with the other lengths specified in 
Figure D.2.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D.2.  A depiction of the five lengths used in the calculation of residual strain. 

                                                           
69  In reality, there are typically still applied forces on fixed-fixed beams after release. 
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Table D.1 – The Description of the Lengths Depicted in Figure D.2 
Length Description 

L the in-plane length as found in Section 2 
Lc the length of the curved fixed-fixed beam as found in Section 3 
L0 the length with zero force applied 
Le the effective length of the fixed-fixed beam when the force Pc is applied 
Le′ the effective length of the fixed-fixed beam when the forces Pc and P+ are applied 

 
 
 
D.3.  The Basic Residual Strain Equation Expressed with Two Terms 
 

Unfortunately, L0 in the basic equation for residual strain [eqn. (D2)] cannot be measured.  
However, the length of the curved fixed-fixed beam, Lc, as depicted in Figure D.2(c) can be.70  This 
fixed-fixed beam is stretched flat in Figure D.2(b).  Now, referring to Figures D.2(a), (b), and (d), the 
residual strain as given in equation (D2) can be divided into two terms as follows:  
 

εr = (Lc – L0) / L0 + (L – Lc) / L0   .    (D3) 
 
The first term is due to the applied force, Pc.  The second term is due to the applied force, P+.  Therefore, 
 

εr = εc + ε+   , where     (D4)  
 

                   εc = (Lc – L0) / L0   , and       (D5) 
 

            ε+ = (L – Lc) / L0   .    
 
The strain due to the applied force, Pc, is εc,71 and the strain due to the applied force, P+, is ε+.72 
 
D.4.  The Theoretical Understanding of the Two Terms 
 
 For the theoretical understanding of the two terms in the modified equation for residual strain 
[eqn. (D3) or eqn. (D4)], refer to Figure D.3.  This figure presents the fixed-fixed beams in Figure D.2 as 
a string of beads.  [Figure D.3(a) refers to Fig. D.2(a), Fig. D.3(b) refers to Fig. D.2(b), and so on.]  With 
zero applied force, the beads are comfortably separated [see Fig. D.3(a)].  Applying a compressive force 
to these beads brings the beads in contact with each other and barely deflecting out-of-plane in the 
z-direction [see Fig. D.3(b)].  This compressive force, Pc, is called the critical force required for buckling.  
Applying an additional force, P+, over and above the critical force causes the beads to deflect out-of-plane 
[see Fig. D.3(c)].73  If the beads are not allowed to deflect out-of-plane due to a surrounding sacrificial 
layer, they are repositioned [as shown in Fig. D.3(d)]. 
                                                           
70  Figure D.2(c) is a 2-D depiction of the fixed-fixed beam after it has been released from the surrounding sacrificial layer. 
71   If the first buckled beam in an array of beams of increasing length is examined, L = Lc for this beam such that ε+ = 0 and 
εr = εc. 
72  This second term is also the residual strain, εr0, as found in Section 3 when a zero, axial-compressive, critical force is 
assumed (i.e., when L0 = Lc such that εc = 0 and εr = εr0 = ε+). 
73  Note that the length, Lc, in this figure, is the same as the length in Figure D.3(b). 
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Figure D.3.  A representation of Figure D.2 using bead-like structures. 
 
 
D.5.  Euler’s Formula 
 
 In section D.3, the residual strain was expressed with two terms.  In equation (D3), L0 is still the 
only unknown and can be found by studying the critical force, Pc, required for buckling.  For long, slender 
beams, the formula usually given is the Euler formula74 [22-25] after the Swiss mathematician Leonhard 
Euler who solved this problem in 1757: 
 

    Pc = π2 E In / Le
2  .     (D6) 

 
Here, E is Young’s modulus, In is the least moment of inertia of the beam’s cross-sectional area about the 
neutral axis,75 and Le is the effective length of the beam.  The effective length of the beam is the distance 
between two successive inflection points or points of zero moment [22-24].  For pivot-ended boundary 
conditions, Le = Lc. For fixed-ended boundary conditions, Le = Lc/2. 
 
D.6.  The Moment of Inertia 
 
 Define Iy as the moment of inertia of an area [22,25-26], A, about the y-axis.  The moment of 
inertia is determined by integration using the following equation: 
                                                           
74  The derivation of this equation can be found in Appendix G.   
75  The neutral axis is a line of zero stress and strain.  The neutral axis will be discussed in more detail in Appendix G. 
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Iy =  ∫

A
 z2dA 
 

where z is the distance of the incremental area, dA, to the y-axis. 
Consider the rectangular cross-sectional area of a fixed-fixed beam, as shown in Figure D.4.  The 

y′-axis divides this area into two equal parts.  To find the moment of inertia of this area about the y′-axis, 
the area is divided into infinitesimal area elements, as shown by the shaded rectangular area in this figure.  
Note that dA = Wdz′ where W is the width of the beam.  The formula for the moment of inertia of this area 
about the y′-axis is then derived as follows:   
 

Iy′ = 2 ∫
0

t/2
z′ 2Wdz′   , and 

Iy′  = (2W/3)  (t3/8) = (1/12)W t3 
 

where t is the thickness of the beam.  If the neutral axis is the y′-axis,76 then 
 

         In = Iy′  = (1/12) A t2  .     (D7) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D.4.  Cross-sectional area of the fixed-fixed beam used to determine the moment of inertia. 
 

 
 

 
D.7.  Hooke’s Law 
 
 Robert Hooke [21-22,25-26] experimentally showed in 1676 that the deformation of an elastic 
body is directly proportional to the applied force (assuming the elastic limit has not been exceeded).  In 
the case of a weight applied to the end of a suspended spring, 
 

Fe = −kz 

                                                           
76  This is shown to be the case in Appendix G. 
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where z is the amount the spring stretched with the weight applied.  Fe is the elastic force exerted by the 
spring in the direction opposite to the stretching.  The constant k is called the stiffness and is the amount 
of force required to stretch the spring one unit of length. 
 Hooke’s law may also be stated in terms of the elastic properties of the material.  In the case of 
stretched elastic bars or wires, Hooke stated that stress is proportional to strain.  In other words,  
 

       E = σ / ε = stress / strain     (D8) 
 
where the longitudinal stress, σ, is the force per unit cross-sectional area (P/A) and the longitudinal strain, 
ε, is the change in length per unit length, as given in equation (D1).  Young’s modulus, E, is a measure of 
elasticity and is a property of the material. 

By rewriting Hooke’s law, the critical strain can be written in terms of the critical force.  
Therefore, equation (D8) becomes 
 

E = −Pc / (Aεc)  or 
      εc = −Pc / (AE)      (D9) 
 
where the negative sign is introduced because the force is compressive. 
 
D.8.  A Formula for the Length, L0, with Zero Applied Force 
 
 Euler’s formula, the equation for the moment of inertia, Hooke’s law, and the definition of strain 
can be used together to derive a formula for the length, L0, with zero applied force.  Inserting equation 
(D6) into equation (D9) produces the following equation: 
 

       εc = −π2 E In / (Le
2EA)   .      (D10) 

 
Inserting equation (D7) into equation (D10), results in the following equations: 
 

        εc = −π2 E [(1/12) A t2] / (Le
2EA)   , and     

      εc = −π2 t2 / (12Le
2) .     (D11) 

 
Note that when the proper value for Le is used in equation (D11), a minimum value for εc  is obtained 
with pivot-ended boundary conditions (i.e., when Le = Lc).  A maximum value for εc is obtained with 
fixed-ended boundary conditions (i.e., when Le = Lc / 2). 
 Equating equation (D5) with equation (D11) results in the following equations: 
 

    εc = (Lc – L0) / L0 = −π2 t2 / (12Le
2)   , 

       (Lc – L0) = −L0 [π2 t2 / (12 Le
2)]   , 

         L0 [1 − π2 t2 / (12 Le
2)] = Lc   , 

    L0 [(12Le
2 −  π2 t2) / (12 Le

2)] = Lc   , and 
    L0 = [(12 Le

2) / (12Le
2 − π2 t2)] Lc   ,    (D12) 
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where Le is the effective length when the force Pc is applied.  For pivot-ended boundary conditions, 
Le = Lc.  Therefore, 
 

L0 = (12 Lc
3) / (12Lc

2 − π2 t2)   . 
 
For fixed-ended boundary conditions, Le = Lc / 2.  Therefore, 
 

L0 = (3 Lc
3) / (3Lc

2 − π2 t2)   . 
 
 
D.9.  The Determination of the Effective Lengths, Le and Le′  

 
Define Le′ as the effective length when the forces Pc and P+ are applied [as shown in Fig. D.2(c)].  

Le′  is the distance between the inflection points.  The value for Le′ can be extracted from the modeling of 
the fixed-fixed beam data using the 3PMFS.   

First, solving equation (10) in section 3.2.1.2 for x results in the following: 
 

       w = w3 + (w3 – w1)(x – x3) / (x3 – x1)   , 
     w − w3 = (w3 – w1)(x – x3) / (x3 – x1)   , 
     (w − w3)(x3 – x1) = (w3 – w1)(x – x3)   , 
     (x – x3) = (w − w3)(x3 – x1) / (w3 – w1)   , 
      x =  x3 + (w − w3)(x3 – x1) / (w3 – w1)   , and 
x = [(w – w3)(x3 – x1) + x3 (w3 – w1)] / (w3 – w1)   .   (D13) 

 
Rewriting equation (D13) for the first and second curves produces the following two equations: 
 

      x = [(w – w3F)(x3F – x1F) + x3F (w3F – w1F)] / (w3F – w1F)   and  (D14) 
       x = [(w – w3S)(x3S – x1S) + x3S (w3S – w1S)] / (w3S – w1S) .  (D15) 

 
For the first curve, x1F and x3F are known, w1F is calculated iteratively, and w3F = π.  The inflection point 
is at w = π/2.  The x value corresponding to w = π/2 is xeF.  Therefore, inserting these values into 
equation (D14) produces the following equation for xeF: 
 

         xeF = [(π/2)(x1F – x3F) + x3F (π – w1F)] / (π – w1F)   .   
 
For the second curve, x1S and x3S are known, w3S is calculated iteratively, and w1S = π.  The inflection 
point is at w = 3π/2.  The x value corresponding to w = 3π/2 is xeS.  Therefore, inserting these values into 
equation (D15) produces the following equation for xeS: 
 

      xeS = [(3π/2 – w3S)(x3S – x1S) + x3S (w3S – π)] / (w3S – π) .  
 
The effective length, Le′, is the difference between the x values corresponding to the two inflection points.  
In other words,  
 

Le′  = xeS − xeF   .      
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 Le is defined as the effective length when the force, Pc, is applied.  To determine Le, the boundary 
conditions when the forces Pc and P+ are applied can be equated with the boundary conditions when the 
force Pc is applied.  In other words,  
 

       Le′ / L = Le / Lc  or 
        Le = Lc Le′ / L   .      (D16) 

 
D.10.  Calculating L0 and εr 
 

L0 can now be calculated.  Simply substitute equation (D16) into equation (D12) as follows: 
 
L0 = [(12 (Lc Le′ / L)2) / (12(Lc Le′ / L)2 − π2 t2)] Lc or 
 L0 = [12 Lc (Lc Le′ / L)2] / [12(Lc Le′ / L)2 − π2 t2]   .   (D17) 

 
To find εr, insert L0 from equation (D17) into equation (D2) as follows:  
 

   εr={L−[12Lc(LcLe′/L)2]/[12(LcLe′/L)2−π2t2]}/{[12Lc(LcLe′ /L)2]/[12(LcLe′/L)2−π2t2]}   . (D18) 
 
Note that both L0 and εr in equations (D17) and (D18), respectively, are a function of the thickness [19] of 
the fixed-fixed beam.  If a value for t is inserted into the correct location on the appropriate NIST Web 
site [14] along with the other inputs for the 3PMFS, these calculations can be performed on-line in a 
matter of seconds.  When t = 0, L0 = Lc, which is the assumption used in Section 3.  For larger values of t, 
L0 > Lc. 
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APPENDIX E.  DERIVATIONS OF CANTILEVER EQUATIONS (21) THROUGH (23) 
 

In this appendix, the derivations of equations (21), (22), and (23) are presented.  These are the 
equations for the unknowns a, b, and Rint in equation (17) in section 3.2.2.2. 

Rewriting equation (18) produces the following equation: 
 

b =  z1 − s*SQRT [Rint
2 – (x1 – a)2]   . 

 
Inserting this equation into equation (19) produces the following derivation of Rint: 
 

z2 = z1 − s*SQRT [Rint
2 – (x1 – a)2] + s*SQRT [Rint

2 – (x2 – a)2]   , 
{z2 − z1 + s*SQRT [Rint

2 – (x1 – a)2]}2 = s2 [Rint
2 – (x2 – a)2]   , 

(z2 − z1)2+ s2*[Rint
2 – (x1 – a)2] + 2(z2 − z1)*s* SQRT [Rint

2 – (x1 – a)2]  = Rint
2 – (x2 – a)2   , 

2s(z2 − z1) SQRT [Rint
2 – (x1 – a)2]  = (x1 – a)2 – (x2 – a)2 − (z2 − z1)2   ,  

SQRT [Rint
2 – (x1 – a)2]  = [(x1 – a)2 – (x2 – a)2 − (z2 − z1)2]/ [2s(z2 − z1)]   , 

Rint
2 – (x1 – a)2  = { [(x1 – a)2 – (x2 – a)2 − (z2 − z1)2]/ [2s(z2 − z1)] }2   , 

Rint
2 – (x1 – a)2  = { [(x1 – a)2 – (x2 – a)2 − (z2 − z1)2]/ [2(z2 − z1)] }2   , 

Rint
2 =  (x1 – a)2 + Q2   , and    (E1) 

     Rint = SQRT [(x1 – a)2 + Q2]   ,    (E2) 
 

where 
 

Q = ± Q′  = ± [(x1 – a)2 – (x2 – a)2 – (z2 – z1)2] / [2*(z2 – z1)]   , 
Q = ± Q′  = ± [(x1

2+ a2 – 2ax1) – (x2
2+ a2 – 2ax2) – (z2

2 + z1
2−2z1z2)] / [2*(z2 – z1)]   , and 

  Q = ± Q′  = ± (x1
2 – 2ax1 – x2

2 + 2ax2 – z2
2 − z1

2 + 2z1z2) / [2*(z2 – z1)]   .  (E3) 
 

 
Equation (E2) is equation (23).  Rewriting equation (18) then inserting equation (E1), produces the 
following derivation of b: 
 

(z1 − b)2 =  Rint
2 – (x1 – a)2   , 

(z1 − b)2 =  (x1 – a)2 + Q2 – (x1 – a)2   , 
(z1 − b)2 =  Q2   , 
z1 − b =  ±Q   , 

b =  z1 + Q   , and 
    b =  z1 − Q′    .      (E4) 

 
Equation (E4) is equation (22).  Rewriting equation (20) produces the following: 
 

(z3 − b)2 + (x3 – a)2 = Rint
2   ,  

[z3 − (z1 − Q′ )]2 + (x3 – a)2 = (x1 – a)2 + Q2   ,  
[(z3 − z1) + Q′ ]2 + (x3 – a)2 = (x1 – a)2 + Q2   ,  

[(z3 − z1)2 + Q′ 2 + 2 Q′ (z3 − z1)] + (x3 – a)2 = (x1 – a)2 + Q2   ,  
z3

2+ z1
2 – 2z1z3 + 2 Q′ (z3 − z1) + x3

2 + a2 – 2ax3 = x1
2  + a2 – 2ax1   , 

z3
2+ z1

2 – 2z1z3 + x3
2 – 2ax3 + 2 (z3 − z1) Q′  = x1

2 – 2ax1   , and 
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2(z3 − z1) Q′  = x1
2 – 2ax1−  z3

2− z1
2 + 2z1z3 − x3

2+ 2ax3   . 
 

Inserting equation (E3) produces the following derivation of a: 
 
2(z3−z1)(x1

2 – 2ax1 – x2
2 + 2ax2 – z2

2 − z1
2 + 2z1z2) / [2*(z2–z1)] = x1

2 – 2ax1−  z3
2− z1

2 + 2z1z3 − x3
2+ 2ax3   , 

 
(z3 − z1)(x1

2 – 2ax1 – x2
2 + 2ax2 – z2

2 − z1
2 + 2z1z2) = (z2 – z1)(x1

2 – 2ax1−  z3
2− z1

2 + 2z1z3 − x3
2+ 2ax3)   , 

 
z3x1

2 – 2ax1z3 – z3x2
2 + 2ax2z3 – z3z2

2 − z3z1
2 + 2z1z2z3 – z1x1

2 + 2ax1z1 + z1x2
2 – 2ax2z1 + z1z2

2 + z1
3 – 2z2z1

2 
= z2x1

2 – 2ax1z2−  z2z3
2− z2z1

2 + 2z1z2z3 − z2x3
2+ 2ax3z2 – z1x1

2 + 2ax1z1 +  z1z3
2 + z1

3 – 2z3z1
2 + z1x3

2 –2ax3z1, 
 
z3x1

2 – 2ax1z3 – z3x2
2 + 2ax2z3 – z3z2

2 + z3z1
2 + z1x2

2 – 2ax2z1 + z1z2
2 

= z2x1
2 – 2ax1z2−  z2z3

2 + z2z1
2 − z2x3

2+ 2ax3z2 +  z1z3
2 + z1x3

2 – 2ax3z1   , 
 

z3x1
2 – z3x2

2 – z3z2
2 + z3z1

2 + z1x2
2 + z1z2

2 – 2a(x1z3 – x2z3 + x2z1) 
= z2x1

2 −  z2z3
2 + z2z1

2 − z2x3
2 +  z1z3

2 + z1x3
2 – 2a(x1z2 – x3z2 + x3z1)   , 

 
2a(x2z3 – x1z3 – x2z1 + x1z2 – x3z2 + x3z1) 

 = z2x1
2 −  z2z3

2 + z2z1
2 − z2x3

2 +  z1z3
2 + z1x3

2 – z3x1
2 + z3x2

2 + z3z2
2 – z3z1

2 – z1x2
2 – z1z2

2   , and  
  

a = (anum1 + anum2) / aden   ,     (E5) 
 
where 
 

anum1 = z2x1
2 − z2z3

2 + z2z1
2 − z2x3

2 + z1z3
2 + z1x3

2   , 
anum2 = −z3x1

2 + z3x2
2 + z3z2

2 − z3z1
2 − z1x2

2 − z1z2
2   , and 

aden = 2*(x2z3 − x1z3 − x2z1 + x1z2 − x3z2 + x3z1)   . 
 

Equation (E5) is equation (21).   
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APPENDIX F.  DERIVATION OF STRAIN GRADIENT EQUATION 
 
 The strain gradient is found from cantilever test structure data.  The strain gradient is present in the 
cantilever before the sacrificial layer is removed.  After the sacrificial layer is removed, the cantilever 
bows out-of-plane in the plus or minus z-direction (see Fig. 2).  The strain gradient in this released 
cantilever is zero.  Examining the out-of-plane measurements of the cantilever after release allows for the 
calculation of the strain gradient present in the cantilever pre-release.   

A circular function can be used to describe the shape of the cantilever after release.  The equation 
for the strain gradient, sg, was given in section 3.2.2.5 to be the following: 
 

    sg ≈ 1 / Rint , 
 
where Rint is the radius of the circle describing the shape of the topmost surface of the cantilever as 
measured with the interferometer.  For the derivation of this equation as presented in this appendix refer 
to Figure F.1, which assumes a linear strain profile77 through the thickness of the cantilever before the 
cantilever is released from the surrounding sacrificial layer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F.1.  Sketch of cantilever used in derivation of strain gradient equation. 
 
 
                                                           
77  The angling and straightness of Edges “a” and “b” in Figure F.1 implies a linear strain profile through the thickness of the 
cantilever before it is released. 
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 Consider the upward bending cantilever depicted in Figure F.1.  From this figure, the following 
equation can be written: 
 

    R1 + t = R2        (F1)  
 
where t is the thickness of the cantilever.  R1 is the radius of the circle characterizing the shape of the top 
(or bottom) of the cantilever while R2 is the radius of the circle characterizing the shape of the bottom (or 
top) of the cantilever such that R1 < R2.  Therefore, for upward bending cantilevers Rint = R1, and for 
downward bending cantilevers Rint = R2.  The following equations are also extracted from this figure: 
 

α (in degrees) = 360 L1 / 2πR1 = 360 L2 / 2πR2 = 360 L0 / 2πR0   , or 
     L1 / R1 = L2 / R2 = L0 / R0  .     (F2) 
 

At this point in the derivation, R0 is the radius of an arbitrary circle.  L0, L1, and L2 are the lengths of the 
curved cantilever whose positioning is determined by R0, R1, and R2, respectively (see Fig. F.1), and 
whose endpoints are determined by the angle α. 

The following are the steps in the derivation of the strain gradient equation that use equations (F1) 
and (F2):  
 

R1  + t = R2   ,  
L1 R0 / L0  + t = L2 R0 / L0   ,  

t = (L2 R0 – L1 R0) / L0   ,  
t = R0 (L2 − L1) / L0   ,  
t L0  = R0 (L2 − L1)   , 
R0 = t L0 /(L2 − L1)   , 

1 / R0 = (L2 – L1) / (tL0)   , 
1 / R0 = [(L0 – L1) – L0 + L2] / (tL0)   , and 

   1 / R0 = (L0 – L1) / (tL0)  – (L0 − L2) / (tL0)  .    (F3)  
 
In determining the strain gradient between the top and bottom of the cantilever, the equations for ε1 [the 
strain at the top (or bottom) of the cantilever] and ε2 [the strain at the bottom (or top) of the cantilever] are 
as follows: 
 

ε1 = (L0 – L1) / (L0)   , and 
     ε2 = (L0 – L2) / (L0) 

 
where L0 is now defined to be the length of the cantilever within the neutral surface78 that does not 
experience any change in length when the cantilever deflects out-of-plane.  Therefore, it is also the length 
of the cantilever before it is released from the surrounding sacrificial layer.  Continuing from 
equation (F3), 
 

1 / R0 = (ε1 / t) – (ε2 / t)   , 
    1 / R0 = (ε1 – ε2) / t   , and 
      sg = (ε1 – ε2) / t = 1 / R0   .     (F4) 

                                                           
78  See Appendix G for a more complete understanding of neutral surfaces. 
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This is the equation for the strain gradient as defined in this report.  Rewriting equation (F4) in terms of 
the interferometric measurement, Rint, the equation becomes: 
 
            sg = 1 / [Rint + (R0 − Rint)]   .    (F5) 
 
If Rint >> (R0 − Rint), which is generally the case, equation (F5) is simplified as follows: 
 

                  sg ≈ 1 / Rint . 
 
This is equation (24) in section 3.2.2.5.  Note that it is independent of length. 
 If the residual strain, εr, equals zero, then the mechanical layer is neither compressive or tensile.  
This implies that Rint + t/2 = R0 for the upward bending cantilever in Figure F.1 where Rint = R1.  In 
general, however, (R0 − Rint) = −s*(t /2) where s = 1 for downward bending cantilevers and s = −1 for 
upward bending cantilevers.  Now, equation (F5) can be written as follows: 
 

        sg0 = 1 / [Rint − s*(t/2)]     (F6) 
 
where sg0 is the strain gradient when εr equals zero.  If a value for t [19] is inserted into the correct 
location on the appropriate NIST Web site [14] along with the other inputs for the 3PMFS, the calculation 
of sg0 in equation (F6) can be performed on-line in a matter of seconds. 
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APPENDIX G.  DERIVATION OF EULER’S FORMULA 
 

It is strongly recommended that the reader refer to the references [22-25] for a more complete 
derivation and understanding of Euler’s formula.  A sketchy derivation is presented here to familiarize the 
reader with this derivation.  It is presented to show that with the assumptions made during this derivation, 
Euler’s formula can be used in Appendix D.  (Appendix D presented a formula for the calculation of 
residual strain assuming a non-zero, axial-compressive, critical force.) 
 This appendix is divided into the following sections:  (1) the differential equation, (2) solving the 
differential equation, (3) Euler’s formula, and (4) applicability of Euler’s formula to the 3PMFS. 
 The assumptions used in deriving Euler’s fomula in this appendix for the fixed-fixed beam are as 
follows: 
 
 1)  The fixed-fixed beam is considered an ideal column (i.e., one that is long, slender, and 

perfectly straight in the absence of an axial-compressive force). 
 2)  It is made of homogeneous material. 
 3)  The load is applied through the centroid of the column’s cross section. 
 4)  The cross-sectional area is symmetrical with respect to an axis (as shown in Fig. G.1). 
 5)  The material behaves in a linear-elastic manner. 
 6)  The column buckles or bends in a single plane. 
 7)  The slope of the elastic curve is small. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure G.1  A 3-D rendering of a column. 
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G.1.  The Differential Equation 
  
 This section is subdivided to highlight the steps in finding the differential equation.  The steps 
include the following:  (1) the curvature as defined in calculus books, (2) the curvature versus ε or σ, 
(3) the neutral axis, (4) the flexure formula, (5) the internal moment, and (6) the differential equation. 
 
 G.1.1.  The Curvature as Defined in Calculus Books 
 

Assume the shape of the column is given by z = f(x).  The following theorem [27] presents an 
equation for the curvature (1/ρ): 
 

Theorem.  If f is a function which is twice differentiable on a closed interval [a,b], the 
curvature of the graph of z = f(x) at any point P:(x,z) on the graph is given by 
 

1/ρ =   d2z/dx2 / [1+(dz/dx)2]3/2, a < x < b. 
 
If the assumption is made that the slope of the elastic curve (i.e., dz/dx) is very small, then (dz/dx)2<<1.  
This assumption is appropriate for the work presented in Appendix D when the force, Pc, is applied.  
Also, it assumes that deflections occur only by bending.  Therefore, the equation for the curvature can be 
rewritten as follows: 
 

1/ρ  = d2z/dx2      (G1) 
 
where the radius of curvature, ρ, can be positive or negative. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure G.2.  A segment of a beam (a) without deformation and (b) with deformation. 
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 G.1.2.  The Curvature Versus ε or σ 
 

Consider the column in Figure G.1.  In this figure, the column’s cross-sectional area is 
symmetrical with respect to an axis.  The longitudinal axis is along the length of the column within the 
neutral surface.  (The neutral surface does not experience any change in length when the column is 
deformed.)  The strain at a location u from the longitudinal axis can be found as follows.  Consider a 
segment of the column in Figure G.1 without deformation, as shown in Figure G.2(a).  The width of this 
segment along the longitudinal axis is ∆x.  A distance u from the longitudinal axis, the width of the 
segment ∆s also equals ∆x.  After deformation [as shown in Fig. G.2(b)], along the longitudinal axis, ∆x 
has a radius of curvature, ρ.  The angle between the sides of the deformed segment is ∆θ.  This is a small 
angle.  Therefore, ∆x = ∆s = ρ ∆θ.  Likewise, ∆s′  (which is located a distance u from the longitudinal axis 
on the deformed segment) is given by ∆s′ = (ρ − u) ∆θ.  Therefore, the basic strain equation (D1) can be 
written as follows: 
 

ε = (∆s′ − ∆s ) / ∆s 
or  

ε = [(ρ − u) ∆θ − ρ ∆θ ] / (ρ ∆θ )   , 
ε = − u / ρ   , and  
  1/ρ = −ε / u .     (G2) 

 
This implies that the strain varies linearly with the distance u from the neutral axis.  As can be seen in 
Figure G.1, the neutral axis is within the plane of the column’s cross section and is the line of zero stress 
and strain.  Above the neutral axis, u is positive such that ε is negative.  Therefore, the segment will 
contract.  Below the neutral axis, ε is positive and the segment will elongate.  The maximum strain occurs 
at the top (or bottom) of the segment.  This implies that 1/ρ = εmax /umax.  Plugging this equation into 
equation (G2) produces the following equation: 
 

εmax/umax = −ε /u  . 
 
But ε =σ/E, so the above two equations can be written as follows:  
 

            1/ρ = −σ/(Eu)   , and     (G3) 
         σmax/umax = −σ /u  . 

 
 G.1.3.  The Neutral Axis 
 
 As given by the above equation, a stress distribution exists over the deformed column’s 
cross-sectional area.  The resultant force produced by this stress distribution must equal zero.  (The stress 
is negative above the neutral axis and positive below the neutral axis.  It is the neutral axis about which 
the cross section rotates.)  Consider the area element dA on the cross section of the column, as shown in 
Figure G.1.  The stress on dA can be written σ = −dF/dA where dF is the force applied to dA.  Therefore, 
dF=−σ dA.  Summing the forces over the cross-sectional area results in the following equations: 
 

0 =  ∫
A
 dF= − ∫

A
σ dA   , 
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      0 = σmax/umax ∫A u dA   , and 
       0 = ∫

A
 u dA   . 

 
This equation states that the first moment of the cross-sectional area about the neutral axis is zero.  But, 
the centroid of the cross-sectional area is given by ∫

A
 u dA / ∫

A
 dA.  Therefore, if the numerator or 

∫
A
 u dA equals zero, then the centroid equals zero.  Hence, the neutral axis about which the cross section 

rotates is the horizontal centroidal axis. 
 
 G.1.4.  The Flexure Formula 
 
 An internal moment, acting at the cross section, is produced by the stress distribution about the 
neutral axis.  The stress, σ, can be written in terms of the moment, M.  Once again, consider the small area 
element, dA, within the column’s cross-sectional area (as shown in Fig. G.1).  The moment, dM, about the 
neutral axis caused by dF is given by dM = udF.  Summing the moments produces the following 
equations: 
 

M =  ∫
A
 udF=  ∫

A
 u (−σ dA)   , and 

M = (σmax/umax) ∫A u
2 dA   . 

 
But ∫

A
 u2 dA is the definition of the moment of inertia, In, of the cross-sectional area about the neutral axis.  

Therefore, 
 

   M = (σmax/umax) In   , and  
M = (−σ / u) In  

or 
   σ = −Mu / In  .     (G4) 

 
Equation (G4) is also called the flexure formula. 
 
 G.1.5.  The Internal Moment 
 

The internal moment can be determined by using the method of sections.  Consider a column with 
pivot-ended boundary conditions, as shown in Figure G.3(a).  A free-body diagram of a section of this 
column is shown in Figure G.4(a).  At the boundary, the moment is zero.  By summing the moments, the 
following equation results:  
 

      M = −Pz       (G5) 
 
where P is the axial load. 
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Figure G.3.  The effective lengths of columns with boundary conditions that have  
(a) pivot-ends, (b) fixed-ends, and (c) fixed and free ends. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure G.4.  A free body diagram of a section of a column with boundaries that have 
(a) pivot-ends and (b) fixed-ends or fixed and free ends. 
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 A column with fixed-ended boundary conditions is shown in Figure G.3(b).  A free-body diagram 
of a section of this column is shown in Figure G.4(b).  One end of this section is located at the cross 
section where the moment is zero.  At this point, the column’s deflection is δ.  Therefore, by summing the 
moments, the following equation results: 
 

M = P(δ − z)  . 
 
 A column with fixed and free boundary conditions is shown in Figure G.3(c).  A free-body 
diagram of a section of this column is similar to the free body diagram of the column with fixed-ended 
boundary conditions, as shown in Figure G.4(b).  Therefore, the above equation for the internal moment is 
used where δ is the deflection of the free end where the moment is zero. 
 
 G.1.6.  The Differential Equation 
 

Combining equations (G3) and (G4) produces the following equation: 
 

1/ρ  = M /(EIn) 
 
where ρ is the radius of curvature at a specific point on the curve, M is the internal moment in the column 
at the point where ρ is determined, E is Young’s modulus, and In is the moment of inertia of the 
cross-sectional area about the neutral axis.  Inserting equation (G5) for pivot-ended boundary conditions 
results in the following equation: 
 

1/ρ  = −Pz /(EIn)   .     (G6) 
 
Equating equations (G1) and (G6) results in the following equations: 
 

d2z/dx2 = −Pz / (E In)   , or 
    (d2z/dx2) + [P/(EIn)]z = 0   .     (G7) 

 
This equation is a homogeneous, second-order, linear differential equation with constant coefficients.   
 
G.2.  Solving the Differential Equation 
 

Equation (G7) can be solved by direct substitution (or using methods of differential equations).  
The general solution is: 

 
        z = C1 sin [(P/(EIn))1/2x] + C2 cos [(P/(EIn))1/2x]  .   (G8) 

 
The boundary conditions of the column determine the coefficients C1 and C2.  For columns with 
pivot-ended boundary conditions [as shown in Fig. G.3(a)], some boundary conditions are: 

1)  At x = 0, z = 0, 
 2)  At x = Lc, z = 0, and 
 3)  At x = Lc/2, z = δ ≠ 0. 
Using the first boundary condition, C2=0.  Therefore, equation (G8) becomes 
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     z = C1 sin [(P/(EIn))1/2x]   .     (G9) 
 
Using the second boundary condition results in the following equation: 
 

0 = C1 sin [(P/(EIn))1/2Lc]   . 
 

The third boundary condition is that at x=Lc/2, z=δ ≠0.  Therefore, C1 = 0 being the trivial solution in the 
above equation is not the preferred solution.  That leaves 
 

sin [(P/(EIn))1/2Lc] = 0   . 
  
This equation is satisfied when 
 

          (P/(EIn))1/2Lc = nπ   ,  where n = 1, 2, 3, . . .   ,  
           [P/(EIn)]Lc

2 = n2π2   , and 
     P = n2π2EIn / Lc

2   .            
 
When n = 1, the smallest value of P is obtained, so the above equation is for the critical load namely: 
 

Pc = π2EIn / Lc
2  .     (G10) 

 
Therefore, given equations (G9) and (G10), the shape of the elastic curve can be written as follows: 

 
z = C1 sin (πx/Lc)   . 

 
With the third boundary condition, C1 = δ, which is the maximum deflection of the column at the 
midpoint along its length.  Therefore,  
 

z = δ sin (πx/Lc)  .     (G11) 
 
 
G.3.  Euler’s Formula 
 
 The above derivation of Pc in equation (G10) is based on a column with pivot-ended boundary 
conditions.  A formula for Pc can also be derived for other boundary conditions in a similar way.   

For columns with fixed-ended boundary conditions [as shown in Fig. G.3(b)], recall that the 
internal moment equation is M = P(δ−z) where δ is half the maximum deflection of the column such that 
 

(d2z/dx2) + [P/(EIn)]z = [P/(EIn)]δ    . 
 
The solution of this nonhomogeneous equation is as follows: 
 

 z = C1 sin [(P/(EIn))1/2x] + C2 cos [(P/(EIn))1/2x] + δ    .  (G12) 
 
The coefficients C1 and C2 are determined by the boundary conditions, which are:  

1)  At x = 0, z = 0, 
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 2)  At x = 0, dz/dx = 0, and 
 3)  At x = Lc, z = 0. 
The resulting formula for Pc is 
 

Pc = 4 π2 E In / Lc
2       (G13) 

 
with the shape of the elastic curve given by 
 

          z = δ [1 – cos(2πx/Lc)] .    (G14) 
 

For columns with fixed-free boundary conditions [as shown in Fig. G.3(c)], equation (G12) 
applies where δ is the maximum deflection of the free end.  Some boundary conditions are as follows: 

1)  At x = 0, z = 0, 
 2)  At x = 0, dz/dx = 0, and 
 3)  At x = Lc, z = δ. 
The resulting formula for Pc is 
 

        Pc = π2 E In / (4Lc
2)      (G15) 

 
with the shape of the elastic curve given by 
 

z = δ [1 – cos(πx/(2Lc))] . 
 

By comparing the above equations for Pc in equations (G10), (G13), and (G15), the following 
general formula for Pc (known as Euler’s formula) results: 

 
Pc = π2 E In / Le

2 
 
where Le is the effective length of the column.  The effective length is defined as the distance between 
successive points of zero-moment (i.e., successive inflection points).  Therefore, for pivot-ended 
boundary conditions, Le = Lc, for fixed-ended boundary conditions, Le = Lc/2, and for fixed- and 
free-ended boundary conditions, Le = 2Lc (see Fig. G.3). 
 
G.4.  Applicability of Euler’s Formula to the 3PMFS 
 
 For MEMS fixed-fixed beams, the boundary conditions are somewhere between fixed-ended and 
pivot-ended.  Therefore, if the distance between successive inflection points is found, the effective length 
is known.  This is compatible with Euler’s formula and implies that the maximum deflection is not 
restricted to the center of the fixed-fixed beam. 
 In section 3.2.1, two curves are merged at the peak deflection to model more accurately the shape 
of the fixed-fixed beam.  [Modeling with one function as presented in equations (G11) and (G14) in this 
appendix is not as accurate.]  Therefore, the inflection points are not necessarily equidistant from the 
maximum deflection.  This allows for phenomena such as uneven beam support heights or some 
nonhomogeneity in the material.  This is realistic, although such assumptions are not used in this 
derivation.  If one function models the shape of the fixed-fixed beam with such phenomena, the location 
of the inflection points and/or the use of one function can be questioned.  Therefore, the use of two curves 
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to model the shape of the fixed-fixed beam is recommended.  And, the effective length as determined 
from the inflection points from the two curves is used as an approximation in Euler’s formula.  Therefore, 
when determining the residual strain assuming a non-zero, axial-compressive, critical force, it is 
preferable for the inputs (x2F, z2F) and (x2S, z2S) to be located at or near the inflection points. 


