D-line doublet observations of Na-like ions

S.C. Sanders¹, A. C. Gall¹,², R. Silwal¹,², J. D. Gillaspy²,³, A. S. Naing², J. Tan², Yu. Ralchenko², and E. Takacs¹,²

¹Department of Physics and Astronomy, Clemson University, Clemson, SC 29634
²National Institute of Standards and Technology, Gaithersburg, MD 20899
³National Science Foundation, Alexandria, VA 22314, USA, USA

We present simultaneous measurements of the \(D1 \) (3s-3p\(_{1/2} \)) and the \(D2 \) (3s-3p\(_{3/2} \)) transitions in Na-like ions of yttrium [1], zirconium, niobium, molybdenum, praseodymium, neodymium, rhenium, osmium, and iridium. The highly charged species were created using the NIST electron beam ion trap (EBIT) [2] and the spectra were recorded with a flat-field grazing-incidence extreme ultraviolet (EUV) spectrometer [1]. The collisional-radiative (CR) modelling code NOMAD [3] aided the line identification measurements of these \(\Delta n = 0 \) transitions. The CR model uses a realistic non-Maxwellian electron energy distribution applicable to the EBIT and input atomic data from the FAC [4]. We show comparisons of the experimental wavelengths to those determined from relativistic many-body perturbation theory (RMBPT) [5] and \(S \)-matrix QED calculations [6]. Our experimental wavelengths agree with both theories overall, with deviations occurring at higher \(Z \) values. These comparisons test the accuracy of the calculation of QED corrections for the sodium isoelectronic sequence at high \(Z \) values, where experimental observations are lacking. In addition to the Na-like \(D \)-doublet observations, we also report measured wavelengths for transitions arising from the Si-, Al-, and Mg-like charge states of these ions.

References