Observation of Indirect Ionization of W⁷⁺ in EBIT plasma

Q. Lu^{1,2}, J. He^{1,2}, H. Tian^{1,2}, M. Li^{1,2}, Y. Yang^{1,2}, K. Yao^{1,2}, C. Chen^{1,2}, J. Xiao^{1,2*}, J.G. Li^{3†}, B. Tu⁴ and Y. Zou^{1,2}

¹Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
²Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
³Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
⁴Max-Planck-Institute für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Based on the previous study by Mita *et al.*[1], the spectra of W^{7+} are measured in the visible and EUV range at SH-HtscEBIT[2] under extremely low electron beam energy conditions. The 574.49(3) nm M1 line of W^{7+} is observed at the nominal electron beam energy of 59 eV which is below the ionization energy of W^{6+} . The multi-configuration Dirac-Hartree-Fock calculation further confirms the identification of this line. A hypothesis of charge-state evolution from W^{5+} to W^{7+} is proposed, based on our theoretical studies on the energy levels of these charge states, in order to explain the appearance of W^{7+} spectra. Indirect ionization via cascade excitations from the long-lived metastable states of lower charge W ions play a key role in occurrence of W^{7+} . In addition, the EUV spectra at 75 eV as well as the FAC calculations also prove that W^{7+} appears 2 charge states in advance according to the ionization energy.

References

[1] M. Mita et al., Atoms **5**, 13(2017)

[2] J. Xiao et al., Proceedings of IPAC2013, MOPFI066 (2013)