Plasma Conditions in Short-Pulse-Heated Buried Tracer Layers from Fine-Structure X-ray Emission

B. F. Kraus1,2, Lan Gao2, A. Chien1,2, K. W. Hill2, M. Bitter2, P. Efthimion2, M. B. Schneider3, R. Shepherd3 and Hui Chen3

1Department of Astrophysics, Princeton University, Princeton, NJ
2Princeton Plasma Physics Laboratory, Princeton, NJ
3Lawrence Livermore National Laboratory, Livermore, CA

A quartet of high-resolution x-ray Bragg crystal spectrometers was deployed at the Titan laser to measure x-ray self-emission from laser-heated Ti and Mn layers in Al foils. Targets were produced via sputtering with thin (0.1–1 \(\mu \)m) layers of mid-Z tracer elements sandwiched between 15 \(\mu \)m Al foil and a thin Al tamp (0–4 \(\mu \)m). When exposed to the relativistic-intensity laser pulse, the target heats comparably to an undoped Al foil if the tracer layer is sufficiently thin. It is only this thin layer that emits fine structure x-rays within the bandwidth of the crystal spectrometers. By shooting a set of targets with varied tracer element (Ti, MnAl, or both), tracer thickness, and tamp thickness, the time-integrated x-ray flux can be measured at many localized depths in the target. These high-resolution fine structure spectra of He- and Li-like Ti and Mn are observable due to focusing spherical crystal forms that enhance signal-to-noise ratio on time-integrating detectors [1]. The dispersed x-ray spectra are compared to collisional-radiative (CR) codes [2,3], implying plasma conditions within each emitting layer. The spatially-resolved, emissivity-weighted plasma parameters provide important benchmarks for hydrodynamic and fast-electron energy transport codes. In addition, the x-ray spectra challenge CR calculations to match line intensities, ratios, widths and shapes, and to explain discrepancies between codes and data [4].

References