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A quartet of high-resolution x-ray Bragg crystal spectrometers was deployed at the Titan laser to 
measure x-ray self-emission from laser-heated Ti and Mn layers in Al foils. Targets were 
produced via sputtering with thin (0.1–1 μm) layers of mid-Z tracer elements sandwiched 
between 15 μm Al foil and a thin Al tamp (0–4 μm). When exposed to the relativistic-intensity 
laser pulse, the target heats comparably to an undoped Al foil if the tracer layer is sufficiently 
thin. It is only this thin layer that emits fine structure x-rays within the bandwidth of the crystal 
spectrometers. By shooting a set of targets with varied tracer element (Ti, MnAl, or both), tracer 
thickness, and tamp thickness, the time-integrated x-ray flux can be measured at many localized 
depths in the target. These high-resolution fine structure spectra  of He- and Li-like Ti and Mn 
are observable due to focusing spherical crystal forms that enhance signal-to-noise ratio on time-
integrating detectors [1]. The dispersed x-ray spectra are compared to collisional-radiative (CR) 
codes [2,3], implying plasma conditions within each emitting layer. The spatially-resolved, 
emissivity-weighted plasma parameters provide important benchmarks for hydrodynamic and 
fast-electron energy transport codes. In addition, the x-ray spectra challenge CR calculations to 
match line intensities, ratios, widths and shapes, and to explain discrepancies between codes and 
data [4]. 
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