EUV spectroscopy on highly-charged tin ions in an electron beam ion trap

J. Scheers^{1,2}, C. Shah³, H. Bekker³, A. Windberger^{1,3}, F. Torretti^{1,2}, W. Ubachs^{1,2},
R. Hoekstra^{1,4}, J. R. Crespo López-Urrutia³, and O. O. Versolato¹

¹ Advanced Research Center for Nanolithography, Science Park 110, 1098 XG Amsterdam, The Netherlands

² Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

³ Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany

⁴ Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Extreme ultraviolet (EUV) light emission from highly-charged tin ions in laser-produced plasma is used in state-of-the-art nanolithography. We present EUV spectroscopy of the relevant Sn^{7+} – Sn^{20+} ions trapped in an electron beam ion trap (EBIT) at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. A matrix inversion technique is introduced to obtain true charge-state-resolved spectra from the measured experimental spectra. Accurate determination of the transitions of highly-charged tin ions is indispensable for producing high-quality atomic data to feed in opacity tables to simulate and optimize the plasma. Intriguingly, we show that the resonance transitions $4p^m - 4p^{m-1}4d$ (m=5-4) of Sn¹⁵⁺ and Sn¹⁶⁺ ions, which have not been previously investigated, contribute in the 2% bandwidth around 13.5 nm that is relevant for nanolithography.